
AD-AIO8 589 VERAC INC SAN DIEGO CA F/G 15/3.1
AN ANALYSIS OF MMCS NETWORK ARCHITECTURES TO SUPPORT THE DATA P -ETC(U)
DEC US! J C TIERNAN DASAG56 80-C-0017

UNCLASSIFIED R-008- NL

Illlllllulllli
Ellhhlllhllhlu
IIIIIIIIIIIIII
lllllIIhhhhll
IIIIIIIIIIIIII

liii-iil

1L25 1.4 111.

*- MICROCOPY RESOLUTION l[ST CHARI

LEVEL~z

) 4901 Moreno Blvd. Sut. 209, Son Diego, CA 92117 (74) 272-1360

DISTRIBUTION STATEMENT A

/poe o public rel"cf 81 12 14 118
L briutmU nimie

-.. Ah

Icoelaed

DTIC
- L ELEC

DEC 1 5 1931

AN ANALYSIS OF "

MMCS NETWORK ARCHITECTURES

TO SUPPORT THE

DATA PROCESSING REQUIREMENTS FOR

SITE DEFENSE

R-00880

16 December 1980

Tne views. opinions. 0a'lo findlings Cortained in tnis -eox.rt are
t .%e of the author(s) a+ t~uc not be cu.Strve as o.- c f ¢ical
, drt .ent of the Ar-y p3slinon, policy. or decisien, urless So
G . :rated by othe% official o t..ntation.

Exo ept as providec ty tne C.ntractor ;'to ;ecwie-.entS List. DD
.1.n2!* ereof. the dis , ,jtion of a ny COntract ir t i. any stae

0' Oe. 1p~ en t O - c'nleti,3- is prohibited with3ut tie =1roval of the
Ccr: a:ting Officer.

Submitted to:

Commander
Ballistic Missile Defense Systems Command

Attention: BMDSC-HUL
DODA Code: W 31 RPD

PO Box 1500

Huntsville, Alabama 35807

Prepared by: Hrd. / and:.

Haro !, d. f , //Jame C. Tiernan

Approved by: . - / .

Charles L. Morefield

7, $&6.6o sO- c.- oo/ 7

DISTRIBUTION STATMVNT A 4901 moron* Boulevard. Suite 209

pproved for public releGse; Son DI California 92117

Distribution Unhmited

r , .

PRELIMINARY NOTES

F A' - - .

I

j

PREFACE

This document is provided to the U.S. Army Ballistic Missile
Defense (BMD) Systems Technology Program (STP) Office in fulfillment of
part of the documentation requirements associated with the Analysis of

Alternative Distributed Network Architectures, a supporting effort for
the Advanced Data Processing Subsystem Investigations (ADPSI).

The purpose of this document is to present the findings of this

study, to indicate the expected critical design constraints imposed by
capabilities of computer and communications hardware to be available in

1981-82, and to identify critical computer subsystem design issues.

Further, the Processing Architecture Evaluation Methodology (PAEM) and
the supporting computer simulation tool, Processing Architecture

Evaluation Simulation (PAES) which were developed to support

architecture design and analysis are described here.

SVIRAC

|ato¢ Om11

---.

TABLE OF CONTENTS

Section Page

EXECUTIVE SUMMARY ES-I

1.0 INTRODUCTION i-I

2.0 PAEM/PAES 2-1

2.1 Processing Architecture Evaluation 2-2

2.2 The Nature of PAEM/PAES 2-3
2.3 Application of PAEMIPAES to Terminal Defense

Data Processing Subsystem Analysis and Design 2-5

t 2.3.1 Processing Modeling 2-5
2.3.2 Evaluation of Architectural Options 2-8

3.0 PROCESS DESCRIPTION AND ANALYSIS 3-1

3.1 Functional Overview 3-i

3.2 Functions Represented by the Process Definition 3-5
3.3 Functional Decomposition 3-5

3.4 Process Evolution 3-10

3.5 Response Time Requirements 3-14

3.6 Use of PAES in Process Definition and Analysis 3-17

3.6.1 Verification of Process Model 3-17

3.6.2 Process Loading Analysis 3-25

4.0 EVALUATION OF NETWORK ALTERNATIVES 4-1

4.1 Evaluation Procedure 4-i

4.2 Evaluation of the Centralized Architecture 4-5

4.3 Evaluation of the Thread Architecture 4-7

SVERAC

JaeaN olii

TABLE OF CONTENTS

(concluded)

.Section Page

4.4 Design and Evaluation of the Hybrid Architecture. . . . 4-11

4.4.1 Functional Partitioning 4-11

4.4.2 PAES Evaluation of CPU Requirements 4-11

4.4.3 RRA and Control Node 4-15

4.4.4 The RR Bus 4-18
4.4.5 THREAD Processor 4-19

4.4.6 Pulse Request (PR) Bus 4-24
4.4.7 SCHEDULING Processor 4-26

4.4.8 Memory Processing/Database Structure 4-26

5.0 CONCLUSIONS 5-1

REFERENCES 5-4

APPENDIX A: Detailed Process Description A-i

APPENDIX B: PAES: Process Architecture Evaluation Simulation

Approach and Capabilities B-1

APPENDIX C: Detailed Architecture Evaluations C-i

APPENDIX D: Cost Summary- i

!/|RAt

iv

LIST OF FIGURES

Figure No. Page

ES-1 PAES - Processing Architecture Evaluation Simulation ES-4

ES-2 Process Overview ES-6

ES-3 Network Synthesis and Analysis Procedure ES-7

ES-4 Recommended Architectural Approach for the BMD

Site Defense Distributed Processor ES-9

2.2-1 PAES - Processign Architecture Evaluation Simulation 2-4

2.3-1 Role of PAEMIPAES in Process Definition 2-6

2.3-2 Characterization of a PRIMITIVE 2-7

2.3-3 Use of PAES in Architecture Evaluation 2-9

2.3-4 Network Synthesis and Analysis Procedure 2-11

3.1-1 Unit and Module Functions in the Terminal Defense

System (Underlay) 3-2

3.2-1 Process Overview 3-6

3.3-1 PRIMITIVE ANGRP, Illustrating Two Mechanizims

For Representing Data Access and Transfer 3-9

3.3-2 Site Defense Process Model 3-11

3.4-1 Process Evolution 3-12

3.4-2 S/V Returns Time Histories For Two Scenarios 3-15

3.6-i Accumulated Number of Objects Processed at

Successive Stages 3-18

3.6-2 Track Initiate Thread Port-to-Port Response Times 3-19

3.6-3 Last TI Thread Port-to-Port Response Time 3-20

3.6-4 Normal Track Thread During Passive Discrimination

Port-to-Port Response Time 3-21

3.6-5 Normal Track Thread During Intercept Planning

Port-to-Port Response Time 3-22

3.6-6 Active Descrimination Thread Port-to-Port Time 3-23

3.6-7 Interceptor Guidance and Track Thread

Port-to-Port Response Time 3-24

3.6-8 TI Returns Processing Load 3-27

3.6-9 OT2 Returns Processing Load 3-28

3.6-10 Load Phasing for the Single-Spike Scenario 3-29

BVIRAC
Imceele d.

Sw

LIST OF FIGURES

(concluded)

Figure No. Page

3.6-11 Thread Contributions to Peak Loading

(Double-Spike Scenario) 3-34

4.1-1 Network Analysis Procedure 4-1

4.2-1 Cpu Utilization for Centralized Architecture 4-6

4.3-1 Thread Architecture 4-8

4.3-2 Allocation of PRIMITIVES to NODES of the

Thread Architecture 4-9

4.4-1 Recommended Architectural Approach for the

BMD Site Defense Distributed Processor 4-12

4.4-2 Allocation of Primitives to Nodes of the

Hybrid Architecture 4-13

4.4-3 The RRA and CONTROL NODE Structure 4-16

4.4-4 Data Flow for Pulse Return Processing 4-21

4.4-5 Correlation Processing 4-23

4.4-6 Discrimination Processing 4-25

QVIRAC
Inc tedVi

LIST OF TABLES

Table No. Page

ES-1 Evaluation Results for the Centralized and
Thread Architectures ES-B

ES-2 Evaluation Results for the Hybrid Architecture ES-11

3.4-1 Process Evaluation 3-13

3.5-1 Port-to-Port Thread Definitions 3-16

3.6-1 Thread Reponse-Time-Driven Cpu Requirements 3-13

3.6-2 Thread Loading-Time-Driven Cpu Requirements 3-32

4.2-1 Cpu Requirements for the Centralized Architecture 4-7

4.3-1 Cpu Requirements for the Thread Architecture 4-10

4.4-1 Cpu Requirements for the Hybrid Architecture 4-14

4.4-2 Bandwidth Requirements at 2000 pps for the RR Bus 4-18

I

CVIRAC
vii

EXECUTIVE SUMMARY

The U.S. Army Ballistic Missile Defense (BMD) Systems Technology

Program (STP) office supports a program to maintain and update

technologies critical to the deployment of a BMD system. One part of

that program, the Advanced Data Processing Subsystem Investigation

(ADPSI), has been directed toward the identification of key technical

issues relating to the data processing subsystem, and the resolution of

those technical issues that would be time-critical in a full scale

development.

As a part of the ADPSI effort, VERAC, Inc. has conducted a study of

alternative network architectures for a distributed data processing

(DDP) approach to implementation of the BMD Site Defense data processing

subsystem. This report is the Final Report documenting the activities

and conclusions reached in the study.

. The purpose of the VERAC study has been to develop and evaluate

alternative distributed processing architectures for the BMD Site

Defense Application. A number of architectures were to be assessed in
this evaluation. These architectures include: (1) an advanced computer

with a Centralized control and memory Architecture; (2) a Thread

Architecture under study by McDonnel Douglas; and (3) a Hierarchical

Architecture. VERAC has developed a model of the functional process

supported by the Site Defense processor in order to perform the

evaluation of alternative architectures. A perferred architecture has

been identified.

$VIRAC
low#o~

W

PAEM/PAES

In order to meet the technical objectives of this study, VERAC

extended a previously developed simulation tool for network flow

analysis into a wholly new Processing Architecture Evaluation

Methodology (PAEM), with a supporting tool, the Processing Architecture

Evaluation Simulation (PAES). PAEM/PAES provides a highly disciplined

and extremely flexible approach to characterization, design and analysis

of centralized and distributed data processing systems. This approach

will have great utility beyond this study, and in particular can support

future BMD work such as the LoAD program.

Developments in computer technology have introduced a new direction

in the design of dedicated data processing subsystems. With the

impending availability of processing elements with substantial power and

therefore applicability of DDP for Terminal Defense missions, the

architectural design associated with the network of distributed

computers now is on a level with the software design.

The Processing Architecture Evaluation Methodology and the

supporting simulation tool, PAES, supports two stages of the DDP HWISW

design process. The first stage is the definition of the process in

terms of the function to be supported, the environment (i.e., threat

scenario) and the requirements. PAEM supports this by providing a

formalized framework for representing the process. Further, the

simulation tool, PAES, provides an effective means of checking the

consistency of the functional process definition by exercising the

functional model in a realistic model of the dynamic environment. The

flexibility of PAES is a particularly important asset at this stage,

since a variety of process models and threat scenarios are easily

introduced for analysis.

PAEM/PAES can provide invaluable support to the second stage of

design in which functions are allocated to hardware elements and the

architectural characteristics of the DDP system are specified. PAEM

provides a framework for specifying architectural elements (including

ES-2

gross computer characteristics, operating systems, bus protocols and

data base management techniques) in a fashion that pinpoints critical

design issues. PAES provides an evaluation of a specific HW/SW design

as it would be expected to function in a realistic, dynamic environment.

PAEM/PAES fills an important gap in otherwise available analysis

tools. Analytic tools (e.g., static, queueing network models) and

static simulations, while being flexible and efficient to use, cannot

reflect the critical congestion effects which actually occur in the

dynamic environment. The presently available tools which can provide

useful measures of performance in the dynamic environment are complex

simulations which are quite inflexible - requiring recoding to examine

substantial deviations in the process definition or in the DDP

architecture. These tools are also expensive to run. Thus, the ability

of these complex simulations to provide an effective HW/SW design aid is

severely limited. They are, however, valuable for final validation of

performance of a design because of their fidelity in performance

prediction.

PAES provides a dynamic simulation, yet retains flexibility in

application by depending upon a table-driven simulator whose table

elements constitute the definition of the process, scenario and

architecture. Run time efficiency derives from the flow approximatioi

which is traded against performance prediction accuracy by the user. As

a result, PAES provides a means for rapidly assessing an alternative

design, and can, in, fact, be integrated as an important aid in the

actual design process.

PAES itself is structured into three functional components

(illustrated in Figure ES-I.):

(1) Input Specification - The process, architecture, scenario,

and output reports required are separately specified.

Automated verification of structural consistency is provided

by this component of PAES.

MVERAC

into;e~lI

....

(2) Simulation - A deterministic, flow-oriented representation

of the processing of "work-units" operates on tables defined

by the Input Specification component. Process and

architectural effects are separately simulated. This

provides the basis for architecture-free process simulation.

The overall modularity makes additions of new architectural

effects modules relatively easy. This component generates

files as directed by the Report Specification.

(3) Report Generation - A User-interactive component produces

performance tables and plots from files generated by the

Simulation component.

The PAEMIPAES methodology has been applied to the BMD Site Defense

processor as summarized in the following.

I
| NOGE 4

PROCESS SCNARIO
SPECIFICATION DRIVER I

I thu ei ec

ARCHITECTURE ARCHITECTURE
SPECIFICATION EFFECTS

$ (RIO1 PI ITVQueue: SV returns

SCENARIO PRIM ITIVE iu (te co t
SPECIFICATION FLO tim a mait

111 3.2
20 6.4

REPORT RCORD SYSTE 306.
SPECIFICATION STATE

INPUT SILATION REPORT
SPECIFICATION GENERATION

Figure ES-i. PAES - Processing Architecture Evaluation Simulation

ES-4 I

SITE DEFENSE PROCESS &EFINITION AND ANALYSIS

Existing software designs have been used in addressing the

functions to be supported. These designs are tied to the use of the CDC

7700 computer; as a result, many design aspects reflect CDC

7700-specific implementation considerations rather than the process

supported by the implementation. A prime example of this is the

partitioning of the software into tasks which collectively can be

effectively scheduled by TOS, the Tactical Operating System.

VERAC first undertook an effort to obtain a machine-independent

description of the BMD process. An overview of this process is

presented in Figure ES-2. This effort was an essential first step in

addressing DOP architecture design, and further, has yielded an

extremely useful characterization for subsequent related analyses, and,

ultimately, for design of the software on a DDP system.

This effort included the following steps: (1) an analysis of the

existing BMD task designs, particularly those which were actually

realized as code (radar interface, target and object tracking, and

discrimination), to obtain a characterization of task code structure

(functions, principal data structure, and timing models); (2) an

aggregation of tasks based upon associations necessary for principal

functional requirements (e.g., tasks on a processing thread were

generally put together); (3) a sequential decomposition of these

functons which ultimately yielded a set of PRIMITIVES, each of which is

a smallest, logically cohesive functional process unit. These

PRIMITIVES served as the basic units allocated in development of a

distributed processing architecture.

Performance requirements and design constraints have been obtained

from available documents. The principal requirements which have

significant impact upon architecture are (I) the "port-to-port" response

times associated with the processing of the various types of radar

returns, and (2) the throughput or total computer processing load

necessary to support all functions in selected scenarios. These

requirements served to guide the Process Definition.

VYiRAC

lace eml/

Radar Returns Fic1rosce i1le

Assiilaton / candidate pulse

Searh Rater earc raserspool

Generation Macroscheduler

S/V
returns

S/V Returns first TI pulse

> Processing request

T\/new TI

returns _______

> TI Tracking I TI pul. se requ Iest

new OT

OT N1/
OT Trcking OT pulse requestJtO0 request

returns 2
ADA

Figurec ASD Proces Overview
ES-6i

NETWORK SYNTHESIS AND EVALUATION

Two previously developed concepts for hardware architectures were

evaluated - a representative Centralized Architecture and a Thread

Architecture devised by McDonnel-Douglas. The evaluation procedure

involving PAES is illustrated in Figure ES-3. The formal Process

Definition provided the basis for defining the Process Description and

Threat Scenario input segments for PAES. A third input segment was

defined corresponding to each of the two Candidate Computer

Architectures.

'ASO{[$Ni AXALTISIU

IM CS DEFINTITION$

L _

Figure ES-3. Network Synthesis and Analysis Procedure

Sample results of the evaluation of these two architectures are

provided in Table ES-I. The results point out the increase in CPU

requirement which is associated with distribution of the processing load

to a set of computers dedicated to specific tasks, as is the case with

the Thread Architecture. Further, one sees that the Thread Architecture

requirements are more sensitive to the scenario.

The next step was to make use of the process analysis and the

evaluation results for the Centralized and Thread Architectures to

synthesize an optimal architecture. This process led us to identify an

architecture of hybrid form.

SVERAC

Incee.ra-e

Table ES-1. Evaluation Results for the Centralized

and Thread Architectures

CPU requirement (MIPS)*

Architecture Single-Spike** Double-Spike***
Scenario Scenario

Centralized 47.67 44.94

Thread 62.17 54.01

* Application processing requirements plus allowance for operating

system overhead

** 140 total objects introduced in a single wave over 100 ms

*** 140 total objects introduced in two waves, each of 100 ms duration
and 1 second apart

THE HYBRID ARCHITECTURE

The recommended Hybrid Architecture is illustrated in Figure ES-4.

The principal features of this architecture are:

Computing Modes

* Special purpose processor for (1) Radar Return Assimilation,

(2) control of the activity of the THREAD Processor, and (3)

control of the RR (radar return) bus (RRA)

0 Unit Resource Manager processor (URM)

0 Special purpose processor for Track Memory access and

update (MEM)

* Special purpose processor for Radar Pulse Scheduling and

control of the PR (pulse request) bus (SCHEDULING)

* A set of processors of identical architecture (the "THREAD

Processors") to perform thread processing (track initiation

and update, discrimination, interceptor control).

ES-8

-L

14 U) 0U
U). ..n I
cmJJ _

.IQ0
Ci _jj

Li UD
3 IX 3 L Jc

.,t 0L L._ _ _ _or

~ _ _ _ _ _ _ _ _ _3

Ic

C) 4.
Ln 4A

a. Lh ai4co Lai C-) C-) =

vi LW CD 4I
C3 L.cec

a- U

k Cab) L.

. L 0)

InI

A LLcu .
I-I*-Q

IAv il_ _ _ _ _ _ _ _ _ _ UIa

I ~cc

GVERAC

ES-9

The bulk of the processing is performed by the THREAD Processors.

Analysis has shown that this partitioning into four dedicated processors

and a multi-processor for various thread functions can in principal be

realized without incurring the increase in total CPU requirement

associated with the dedicated distributed computer organization of the

Thread Architecture.

An analysis of port-to-port response requirements reveals that most

of the thread processing can be accomplished with processors having .5

MIPS processing power. End game processing (interceptor control and

associated object tracking) would require 1.25 MIPS processors. Thus,

options for architectures of this generic form range from a 'largea

number of "small" processors, up to one or a few "large" processors.

Further analysis, including costing, would resolve the choice of optimum

size thread processors.

Communication Buses

0 RR (Radar Return) Bus structured as a parallel 32b X 1

Megabit/sec channel under TDMA control, handling pulse

returns and track records for use by THREAD processors

• PR (Pulse Request) Bus structured as a parallel 32b X I

Megabit/sec channel under demand responsive control

& RC (Resource Control) bus.

This organization of the necessary data transfers takes advantage of the

inherently uniform and predictable total loads, independent of

scenario. These buses can easily be designed using current technologies.

Evaluation of this Hybrid Architecture yielded nearly identical

results for CPU requirements as for the Centralized Architecture.

Including estimates for the control of the THREAD Processors and for bus

control, we obtained the estimates of CPU requirements provided in Table

ES-2.

ES-1O

L/

Table ES-2. Evaluation Results for the

Hybrid Architecture

CPU Requirement (MIPS)

Single-Spike Double-Spike
Scenario Scenario

37.63 35.97 1

The differences, as compared to the results for the Centralized and

Thread Architectures given in Table ES-1, are due to: (1) the

(potential) efficiency of the multi-processor structure of the THREAD

processors in the Hybrid Architecture yields an Epplication requirement

I' nearly identical to that for the Centralized Architecture; (2) the clear
functional partitioning in the Hybrid Architecture would entail

substantially less operating system overhead.

SVIRAC
lace~o~dMir- ,

CONCLUSIONS

The Hybrid Architecture advanced here offers a number of singularly

attractive characteristics:

(1) The approach allows the shifting of the functions addressed

by a computer during a scenario so that the system loading

remains balanced, and no processing capability is idle during

peak loading.

This characteristic depends on the centralized pulse-return

schedul - functicii located in the RRA, to retain the

simplicit, of design, and the centralized database structure.

(2) Fault tolerance is embedded in the parallel design. THREAD

pricessoers are envisioned as performing constant on-line

testing. When a fault is reported by a processor to the RRA,

this THREAD Processor is immediately descheduled. The

problem of providing high processor reliability is then

concentrated on the special-purpose RRA, MEM, and SCHEDULING

processors.

Thi . characteristic depends on the centralized scheduling and

the completely redundant structure of the proposed THREAD

processors.

(3) The computing speed of the THREAD processors need not be over

0.5 MIPS, except for end game processing, where 1.25 MIPS

processors are required. Thus, the actual capability

selected for these processors would be based on a

trade-analysis of cost, redundancy, and operating system

complexity. Thus, there is an opportunity to minimize cost.

(4) Maximum loading of the processor segments is determined by

the radar pulse rate limit. Thus, simple protocols for the

BUSSES, and MEM, RRA, and SCHEDULING processors can be

implemented.

ES-12

The architecture requires a 1 Mwps at 32b/w BUS on the input

and an idencical BUS on the output. Given 10

accesses/pulse-return as a bound, 20,000 access/sec (50

P-sec/access) are required to support a 2000 pps radar rate.

These data and access rates are easily obtained with present

technology.

(5) Both the RRA and SCHEDULING processors are special-purpose

processors with control structures dedicatd to performing the

required algorithms. These processors, and the MEM

processor, would be designed with emphasis on fault

tolerance. The RRA and SCHEDULING processors both are

implemented as two-stage processors. The URM might also be a

special purpose processor.

The architecture can be contrasted with the Thread Processing

Architecture or the Centralized Architecture that were also examined in

this study.

The Thread Architecture has a limited number of functions assigned

to each computing NODE. This requires that redundancy be added to the

NODE structure in order to achieve high reliability. The redundancy can

be provided for a NODE either internally to each processor, or by

providing multiple processors. Also, distinct hardware and software

components may be required for different NODES, increasing the cost and

complexity of design and development. A Thread Architecture has the

characteristic that substantial application processing capability is not

being used at the maximum loading point in the worst-case scenario.

The Centralized Architecture has the major fault of not taking

advantage of the response-time/throughput loading disparity

characteristic of the Site Defense Problem. The processing power must

support the peak throughput loading. A very powerful and costly

processor must be provided to meet this load. Managing the central

processor requires a significant operating system overhead in addition.

(VIRAC
L.5-1 J

lac oeeI

VERAC has analyzed the loading and throughput requirements for the

BMD Site Defense Processor. This analysis has motivated the development

of an approach to the processing architecture that is characterized by

parallel processors scheduled in real-time to perform needed functions.

The approach also depends on a central, track database managed by a

dedicated processor, and on a single scheduling and control point.

-

ES-14

/

1.0 INTRODUCTION

The U.S. Army Ballistic Missile Defense (BMD) Systems Technology

Program (STP) office supports a program to maintain and update

technologies critical to the deployment of a BMD system. One part of

that program, the Advanced Data Processing Subsystem Investigation

(ADPSI), was directed toward the identification of key technical issues

involved in the data processing subsystem, and the resolution of those

technical issues which would be time-critical in a full scale

development. As a part of the ADPSI effort, VERAC conducted this study

of alternative network architectures for a distributed data processing

(DDP) approach for the data processing subsystem.

In order to meet the technical objective of this study, VERAC

extended a previously developed simulation tool for network flow

analysis into a wholly new Processing Architecture Evaluation

Methodology (PAEM), with a supporting tool, the Processing Architecture

Evaluation Simulation (PAES). PAEM(PAES, described briefly in Section 2

and more fully in Appendix B, provides a highly disciplined and

extremely flexible approach to characterization, design and analysis of

(centralized and) distributed data processing systems.

In addressing the functions to be supported, existing software

designs have been used, specifically those of TAP, the Tactical

Applications Program [3,4]. These designs are tied to the use of the

CDC 7700 computer; as a result, many aspects of these designs reflect

CDC 7700-specific implementation considerations rather than the process

supported by the implementation. A prime example of this is the

partitioning of the software into tasks which collectively could be

effectively schedule by TOS, the Tactical Operating System.

The third section contains a discussion of the effort to obtain a

machine-independent description of the BMD functions. This effort was

an essential first step in addressing DDP architecture design, and

1I-I

further, yielded an extremely useful characterization for subsequent

related analyses, and, ultimately, for design of the software on a DDP

system. The effort we have conducted included the following steps:

(1) an analysis of the existing BMD task designs, particularly those

which were actually realized as code (radar interface, target and object

tracking and discriminaton), to obtain a characterization of task code

structure (functions, principal data strucure, and timing models); (2)

an aggregation of tasks based upon associations necessary for principal

functional requirements (e.g., tasks on a processing thread were

generally put together); (3) a sequentially decomposition of these

functions, ultimately to yield a set of PRIMITIVES, each of which is a

smallest, logically cohesive unit. These PRIMITIVES served as the basic

units allocated in development of a distributed processing architecture.

Performance requirements and design constraints have been obtained

from available documents. The principal requirements which have a

significant impact upon architecture are (1) the "port-to-port" response

times associated with the processing of the various types of radar

returns, and (2) the throughput or total computer processing load

necessary to support all functions in selected scenarios. These

requirements served to guide the Process Definition.

PAES was used, independently of a specification of computer network

architecture, to perform an analysis of the loading associated with two

BMD scenarios. This loading analysis provided valuable insights into

the efficacy of candidate architectures and aided the synthesis of the

Hybrid architecture.

Three types of architecture were examined: (1) centralized

(roughly corresponding to the existing CDC 7700 implementation), (2)

thread (closely corresponding to the MDAC paper design), and (3) hybrid,

developed by VERAC as a part of this study. Evaluation of these

architectures is given in Section 4, with further details contained in

Appendix C.

Section 5 provides important conclusions of this study.

1-2

2.0 PAEM/PAES

This section briefly presents a methodology for supporting the

analysis and design of the distributed data processing subsystems. This

methodology played a critical role in this study in supporting the

design and anslysis of alternative computer network architectures for

the Terminal Defense data processing subsystem. In this application,

the number and complexity of functions to be supported and the large

number of hardware architectural options leads to a large, complex

design effort. The purpose of the methodology presented here is to

provide an efficient means of assessing HW/SW options at a level of

detail sufficient for first cut designs, while, at the same time,

realistically reflecting the dynamic processing load encountered in the

Terminal Defense mission.

The Processing Architecture Evaluation Methodology (PAEM) presented

here is a systematic procedure for modeling the system function required

with hardware and software implementations. PAEM utilizes the

Processing Architecture Evaluation Simulator (PAES), the tool which

makes possible performance evaluation in a dynamic environment. Further

detailed description of PAEM/PAES is provided in Appendix B.

2.1 Processing Architecture Evaluation

Developments in computer technology have introduced a new direction

in the design of dedicated data processing subsystems. Where

previously a single central computer would support requirements, the

critical design effort was focused on software - processing algorithms

and the application operating system. With the impending availability

of processing elements with power in the 3-5 MIP range and therefore

applicability of DDP for Terminal Defense missions, the architectural

design associated with the network of distributed computers now is on a

level with the software design.

The Processing Architecture Evaluation Methodology and the

supporting simulation tool, PAES, supports two stages of the DDP HW(SW

design process. The first stage is the Definition of the Process in

SVIRAC

2-1

terms of the function to be supported, the environment (i.e., threat

scenario) and the requirements. PAEM supports this by providing a

formalized framework for representing the Process. Further, the

simulation tool, PAES, provides an effective means of checking the

consistency of the functional Process Definition by exercising the

functional model in a realistic, dynamic environment. The flexibility

of PAES is a particularly important asset at this stage, since a variety

of process models and threat scenarios are easily introduced for

analysis.

PAEM/PAES can provide invaluable support to the second stage of

design in which functions are allocated to hardware elements and

architectural characteristics of the DOP system are specified. PAEM

provides a framework for specifying architectural elements, including

gross computer characteristics, operating systems, bus protocols and

data base management techniques, in a fashion that pinpoints critical

design issues. PAES provides an evaluation of a specific HW/SW design

as it would be expected to function in a realistic, dynamic environment.

PAEM/PAES fills an important gap in otherwise availab!e analy &.

tools. Analytic tools (static, queueing network models) snid static

simulations, while, being flexible and efficient to use, cannot reflect

the critical congestion effects which actually occur in the dynamic

environment. The presently available tools which can provide useful

measures of performance in the dynamic environment are complex

simulations which are relatively inflexible - requiring recoding to

examine substantial deviations in the process definition or in the DOP

architecture - and expensive to run. These features severely limit the

ability of these complex simulations to provide an effective HW/SW

design aid. They are, however, valuable for final validation of

performance of a design, because of their fidelity in performance

prediction. PAES provides a dynamic simulation, yet retains flexibility

in application by depending upon a table-driven simulator whose table

elements constitute the definition of the process, scenario and

architecture. Run time efficiency derives from the flow approximation

at some cost in performance prediction accuracy. As a result, PAES

A

provides a means for rapidly assessing an alternative design, and can,

in fact, be integrated as an important aid in the actual design process.

2.2 The Nature of PAEM/PAES

In the design environment where the computing resource is a single,

large central computer, the hardwarelsoftware design process separates,

after, a preliminary design step, into two largely independent, parallel

paths. Integration occurs near the end of the development cycle. In

contrast, when a distributed data processing resource is a candidate

approach, the hardware/software design process is integrated

throughout. So, while the use of distributed data processing technology

can lead ultimately to substantial advantages, the associated design

process is substantially more complex because it involves a hardware

design effort and substantially more coordination between the software

and hardware design.

The Processing Architecture Evaluation Methodology (PAEM),

supported by the Processing Architecture Evaluation Simulation (PAES) is

specifically designed to support an integrated HW/SW design effort for

DDP systems.

The complexity inherent in integrated HW/SW designs is

substantially relieved in PAEM by the separate representation of process

(functional representation of software) and hardware architecture

(functional representation of hardware and hardware-related effects).

The first step in PAEM is an architecture-free Process Definition which

focuses on representation of the process to be supported by the

software, representation of the threat scenario and representation of

the evolution of the process. The tool PAES supports this step, again,

independently of any architectural effects, by providing for simulation

of the process in a canonical dynamic environment which does not include

the effects of overhead processing and delays associated with specific

implementations. This capability allows for detailed checking of the

Process Definition before any architectural effects are introduced.

~VURAC

Imce0o~l/

PAES itself is structured into three functional components

(illustrated in Figure 2.2-1):

(1) Input Specification - The process, architecture, scenario

and output reports required are separately specified.

Automated verification of structural consistency is provided

by this component of PAES.

(2) Simulation - A deterministic, flow-oriented representation

of the processing of "work-units" operates on tables defined

by the Input Specification component. Process and

architectural effects are separately simulated. This

provides the basis for architecture-free process simulation.

The overall modularity makes additions of new architectural

effects modules relatively easy. This component generates

files as directed by the Report Specification.

(3) Report Generation - A User-interactive component produces

performance tables and plots from files generated by the

Simulation component.

PROCESS SCE?4ARIO
SPECIFICATION 3RIVER

tim. mee

ARCHITECTURE ARCHITECTURE
SPECIFICATION EFFECTS

SCERIO PRIMITIVE S return

SPECIFICATION FLOW tire (asecJ count

10 3.2
20 . 6.4
30 6.2

REPORT RECORO SYSTE4 40 8.4

SPECIFICATION STATE

NUT REORT

SPECIFICATION SIULATION GENERATION

Figure 2.2-1 PAES - Processing Architecture Evaluation Simulation

2-4

2.3 Application of PAEM/PAES to Terminal Defense Data Processing

Subsystem Analysis and Design

PAEM(PAES has an important role in two stages of the design

process: (1) in the Process Definition/Functional Decomposition stage,

and (2) in the analysis of architectural options. Each of these roles,

as they relate to the Terminal Defense system, is described in separate

subsections below.

2.3.1 Process Modeling

Process Modeling, illustrated in Figure 2.3-1, interfaces with a,

system level mission analysis and high level process characterization.

The mission analysis produces a description of functions to be

performed; the environment and, in particular, the threat scenario(s);

and performance requirements. Functional decomposition is then

undertaken to elaborate the description of functions into a set of

subfunctions each of which is a logical, "primitive" process element.

It is these primitives which are represented in PAEM/PAES.

In PAEM/PAES each processing primitive is represented in a standard

format. This is illustrated by the representation for the primitive

ANGRP in Figure 2.3-2. The principal elements of the representation

are: (1) input queue buffer, (2) processing load representation in

terms of (estimated) machine language instructions executed for each

input "work-unit", (3) one or more accesses to a resource which may

reside inside or outside of the computing node supporting the processing

represented by this primitive, and (4) an output queue buffer. This is

one of the simpler processing primitives. Other primitives involve

several inputs, several external accesses (e.g. to data bases) and/or

several outputs - but all primitives involve a single processing load

model.

The high level process characterization is used to develop a

process evolution model. For Terminal Defense this model reflects the

sequence of processes which are triggered by the initial detection of an

RV, ghost, decoy, fragment, or other "object".

SVERAC

I~co~enI

k

The Processing Architecture
Evaluation Methodology embodies
a formalized approach to Process
Definition, including a standard
format for representation of
subfunctions, scenario inputs
and process evolution model.
Use of PAES assists the Process PAEM/PAES
Definition by providing a tool
for checking out the mutual
consistency of these elements of
the process in a realistic,
dynamic environment.

I
PROCESS DEFINITION

- Functions to be performed
- Environment (threat scenario)
- Performance requirements

FUNCTIONIAL DECOMPOSITION

Decompositions of functions into
subfunctions and associated per-
formance requirements

Figure 2.3-1 Role of PAEMIPAES In Process Definition

2-6

ANGLE
GROUP

S/V L;ETURdiS ALEYI DATA

GROUP AN1GLE

PROCESS llG GROUP / U J

*PROCESSING TIME *DATA BASE
ACCESS TIJ'E

Figure 2.3-2 Characterization of a PRIMITIVE

(I VE27

PAES assists in this Process Modeling stage by providing a

mechanism for validating the model in a realistic, dynamic environment.

The Process Evolution Model is determined by combination of the

description of the threat and the high level description of the

engagement process. For example, these factors indicate the average

time spent in each stage of processing. These times, together with a

specification of the mix of object types, determine the splitting

parameters.

The tool PAES provides valuable support to Functional Decomposition

and Process Evolution Modeling by exercising the explicit, parameterized

representation of processing primitives, with the process model

embedded, in a canonical dynamic environment. The Report Generation

capability provides detailed views of internal processing (e.g., queue

counts and flows) to assist in this validation effort.

An extermely important feature of PAEM in this Process Modeling

stage is the explicit representation provided which can serve as the

context for discussion amongst the various contributors to an analysis

and design effort. Assumptions about critical aspects of the process

algorithms, in terms of processing loads, data files access requirements

and interrelationships as defined by the process evolution model, are

made explicit so that they can be the object of technical criticism,

refinement, and, ultimately, consensus.

2.3.2 Evaluation of Architectural Options

The second and equally significant role for PAEM/PAES in DDP HW/SW

analysis and design is in the evaluation of architectural options, as

illustrated in Figure 2.3-3.

The Processing Architecture Evaluation Methodology supports

successive HW/SW design stages through explicit representation of the

allocation of subfunctions to computing Nodes (i.e.- processors), the

architectural characteristics of these Nodes, and the communication

Buses and Resources associated with the Node set. The supporting PAES

2-8

The Processing Architecture
Evaluation Methodology supports
successive MW/SW design and evalu-
ation stages, through explicit
representation of the allocation
of subfunctions to computing Nodes
and of the architectural effects
of these Nodes, and of communi- PAEM/PAES
cation Buses and Resources. The
supporting PAES program provides
for distinct, data-specified I
representation of functions,
architectures and scenarios in
order to provide maximum flexi-
bility in efficiently examining
HW/SW alternatives. The simulation
and associated report generator
provides a thorough view of per-
formance in a realistic, dynamic
environment, providing such measures
as CPU utilization, buffer queue
dynamics and port-to-port response
times.

SOFTWARE FUNCTIONAL
SPECIFICATTION

Characterization of process
algorithms corresponding to
subfunctions

ALLOCATION

Mapping of subfunctions to hard-
ware architecture

HARDWARE FUNCTIONAL
SPECIFICATION

Characterization of computers,

peripherals and communication
buses

Figure 2.3-3. Use of PAES in Architecture Evaluation

SVIRAl
-MumI

L!

program provides for distinct, data-specified representation of

functions, architectures and scenarios in order to provide maximum

flexibility in efficiently examining HW/SW alternatives. The simulation

and associated report generation provides a thorough view of a

performance in a realistic, dynamic environment, providing such measures

as cpu utilization, buffer queue dynamics and port-to-port response

times.

The design and analysis procedure is illustrated in Figure 2.3-4.

The Process Modeling, accomplished as the first step of design/analysis,

serves to define the process and threat scenario. Computing network

structures are postulated and primitives are allocated to computing

nodes, bus organization and protocols are defined, and external accesses

are resolved to define candidate architectures.

The program PAES is applied to each candidate architecture to

produce performance measures for purposes of comparison to requirements

and to results for other candidate architectures. Critical measures are

port-to-port response time on critical threads and cpu utilization.

The flexibility in the use of PAES, particularly in specifying

architectural alternatives, greatly assists in the isloation of critical

functions that require special-purpose architectures or algorithm

modification in order to achieve balanced costlrisk implementation.

2-10

RISO AFI

Figure .3-. Ntwork SnthesiAND Aayi rcdr

PROCESS CEFN1TO

PROES

3.0 PROCESS DESCRIPTION AND ANALYSIS

The purpose of this section is to present an overview of the

process description developed for the BMD terminal defense data

processing function. Furthermore, implications for architecture are

derived by application of PAEM/PAES to this process description.

3.1 Functional Overview

The functions to be supported by the data processing subsystem in

the Terminal Defense System (Underlay) are illustrated in Figure 3.1-1

(taken from [1]). At the highest level, these functions are partitioned

into three groups:

(1) defense unit or "Non-Module Command DU", indicated in the

leftmost box,

(2) C3 interface, and

(3) module functions, indicated in the rightmost box headed by

"Module Command DU".

The top level unit functions that have been ide.itified are prescribed in
1

the following:

Unit Resource Management (URM)

The URM function maintains the object status information for each

object in track. It accepts and processes messages from the ODD

function to establish track on objects, and from the OT/OD functions to

maintain status on objects. It provides processing to perform

allocationfreallocation of DP and radar timeline resources. It provides

to the OT, OT, ODD, and USC functions the DP and radar timeline

1These descriptions are adapted from (23. References to KMR

(Kwajalein Missile Range) test functions have been deleted.

SDVIRAC

3-1

L3 -0
w ,. 44L.3~- I" w cn w w -c

LU) L U J) - = a -

CL..
C3O

L2

ca
L..j

-4-b

4ci
Lu

Lu 0 -

00
LLS

4 J4.

06 C6 C a

LL, LL.L -4 4
c ci

Lu
0)

00
a

dcU t^1
cl ui a

resources available for data augmentation and maintains data received
from these functions on the level of resource utilization.

Radar Return Assimilation (RRA)

This function processes all return messages from the Systems

Technology Radar (STR). It evaluates the validity of each message from

the STR, and sorts messages in order to determine subsequent Engagement

Software (ESW) functions for processing.

Radar Scheduler (RS)

This function provides the TAP interface with the STR for

scheduling and transmitting radar command messages. The RS function

provides the STR with all the data required to transmit pulses and

associate and process returns to the ESW. The RS function receives

radar pulse requests from other functions, and schedules radar pulses as

limited by radar timing and energy constraints imposed by the Unit

Resource Manager (URM).

Unit Search Control (USC)

This function (not illustrated in Figure 3.1-1) stores and provides

the RS function information needed to initiate scheduling of identified

search areas for reentry vehicles. As such it identifies the set of

prestored search beam requests (including the designation of normal

search versus data augmentation search), their execution sequence, and

associated pulse rates to be scheduled by the RS function.

Object Detection and Designation (ODD)

This function processes all search/verify target reports in order

to prepare state vector estimates for the initiation of tracking and to

reduce the non-threatening and redundant target load in track. It first

associates valid detections in the search/verify report into angle

groups. For each angle group a track initiate pulse sequence is

determined.

~V3RAC

3-3

/ .+

The ODD function eventually designates each target (valid detection

in the S/V report) as a ghost, object or non-threatening object (as

determined by a non-threatening velocity vector). This designation is

based on track initiate radar return information for each angle group.

Information on designated objects are passed on to the OT function for

track processing.

Object Track (OT)

The OT function provides the capability to establish and maintain

track on objects which pass the track initiation process. It evaluates

quality of tracking returns, updates object state and error covariance

from valid returns, and determines the beam pointing parameters for

additional tracking pulses. The OT function monitors status on each

object and writes status change data to URM.

Object Discrimination (OD)

The 00 function provides the capability of classifying an object as

an RV, tank, decoy or fragments. If an object is classified as an RV,

then OD will determine the class of RV and where the impact point is

expected. An option is provided to drop objects from track via a

notification to OT for those objects determined to be fragments. In

order to perform this processing, OD will request the scheduling of

active discrimination radar pulses by the RS function.

The interface to the Command, Control and Communications (C
3)

Subsystem is performed by the following function (indicated as Module

Communications in Figure 3.1-1):

Defense Module Communications (DMC)

This function handles interfaces between the ESW and the Command,

Control and Communications Subsystem. As such it processes all high and

low speed communications traffic and performs message error processing.

I-A

3.2 Functions Represented by the Process Description

For purposes of detailed analysis, a portion of the set of

functions has been selected. These functions are illustrated in figure

3.2-1. The functions included here are:

0 radar returns assimilation

0 radar scheduling (including search raster generation)

* S/V returns processing

0 angle group tracking (Track Initiation)

0 object tracking

* object discrimination

* intercept planning

* interceptor control.

Not included are:

0 unit resource management

0 communications interface

* model level functions.

This selection was based upon the fact that the selected functions

constitute nearly all the processing load and include all critical

threads for response time considerations. The remaining functions are

not well-described in existing documentation.

3.3 Functional Decomposition

The development of the detailed process description was based upon

a critical review of available software documentation ([1], [2]). The

processing of TASKs was examined to identify structure, timing models

and required data accesses and transfers.

VERAC
Iec.*3mted 3-5

* I . . . _

iradar returns radar commands1, < RADAR '

Radar Returns Micoschedul er

Assimilation
candidate pulse

Search Raster search rasters pool

Generation Macroschedu]er

S/V
returns

S/V Returns first TI pulse

Processing request

new TI

TI T
returns

> TI Tracking ITI pulse request

new OT

returns

OT pulse request
> OT Tracking

0OD request

AD
returns Object AD pulse request

Discrimination

Intercept request

Inftercept Planning I f i r s t fIG pulse request

returns Intercept plan

>) Intercept Control tI us eus

3.2-1. Process Overview

" -R/" t

Structure was identified in terms of three general elementary

structures: parallel, sequential-repeated and sequential-distinct, as

described further here.

Parallel

The function substantially consists of alternate, and logically

distinct, processing paths, depending upon the specific nature of the

input instance. Pictorially, the functional structure is of the form:

II
I where the initial and/or final stage of processing may be absent.

Sequential-Repeated

The function substantially consists of a sequence of processes, a

large portion of which are identical in nature, as for instance in an

iterated loop. Pictorially, the functional structure is of the form:

where the initial and/or final stage of processing may be absent.

(VIRAC

/

Sequential-Distinct

The function substantially consists of a sequence of processes,

logically bound and distinct in nature. Pictorially, the functional

structure is of the form:

The analysis was recorded in the form of a set of one or more

PRIMITIVEs corresponding to each TASK. For example, the S/V returns

processing function, implemented in the TASK TDRP, in represented as:

Each named ellipse is a PRIMITIVE function. This diagram illustrates

the sequence of processing events.

Each PRIMITIVE details the inputs, outputs, processing load (CDC

MLI instructions), significant data accesses and transfers, and

scenario-dependent evolution of processing. For example, the PRIMITIVE

ANGRP is illustrated in figure 3.3-1.

In Appendix A, a complete, detailed process description is provided

for the function of figure 3.2-1. One particular feature of this

description merits attention here. We have adopted a flow-oriented

3-A

N

EU

- -4-

u S

o c
CL0->

0L- 1(
to CI

I-
I4-

C- 4

4-l cm-

S- C

L) UL a 0

4)~ C

a (U ui

CL.C C= -j -
=o~ c"-0 M 0 o4JI

CLI rro CL S nD~ ;4

a S- cm ea -o*-

CD

r_ U.

IAA

~ 4A a,

n 0C U I I 0)
C. I- Sfl S') C

cm 0 S- 0

C- M,-

CL

a, Aj C.

-. m I- 0.0
IA0 V) -I
U4- C a

CD4- 0M. I--

(D I4fl

C.3-9

aL

representation of the evolution of the status of objects (and

interceptors) as they are detected, tracked, classified and

intercepted. These parameters appear in the final splitting to obtain

outputs in each PRIMITIVE.

In Figure 3.3-2, the complete set of primitives are indicated. The

flow indicated corresponds to the sequence of processes corresponding to

pulse returns. The general layout corresponds to the process overview

previously presented in Figure 3.2-1. In this figure one can see this

detail and corresponding processing of pulses associated with previously

identified process evolution states. In Appendix A, details of the

process evolution model are provided.

3.4 Process Evolution

To provide a representation of the process evolution we have

adopted a finite-state model. The process states are indicated in Table

3.4-1. Objects begin in the state "SV", i.e., have associated

search/verify returns, and evolve through states TI * OT1 * OT2 * OT3

OT4 > OT5* complete. Some objects are dropped at an intermediate

stage. Further, entering OT3 is associated with the generation of

active discrimination pulses, and OT4, with tracking while planning

intercept, and OT5, with tracking while intercepting.

The overview of the process evolution is illustrated in Figure

3.4-1.

The specific scenarios assumed in evaluating alternative network

architectures is characterized by the following mix of objects:

Redundants 8

Ghosts 10

Fragments 20

Decoys 70

RV's 32

Total Objects 140

3-10

ISM1 iSS110cd SS". a *Z-Et ainoll

U33131

3M,

AwI LijI1O iioi! uo.

SA L limi iw 4 C

Wild U

C1IL

VlA 11 11 IO fol l, ft

III kill I)

Sv

IT

PLANIN SESE

TRCdeadCWNAIN ITECPO
PRCSSSPRCSESPOCSE

F Tir 3-. PoesE olution

~.70 SE

Table 3.4-1 Process Evolution States

SV search verify processing

TI angle group tracking (track initiation)

OT1 object tracking before any object discrimination

OT2 object tracking with passive object discrimination

OT3 object tracking with active object discrimination

0T4 object tracking during intercept planning

OT4 object tracking during intercept

POD passive object discrimination for unclassified objects

(objects in state OT2)

AD active object discrimination for unclassified objects

(objects in state OT3)

MG missile guidance

3-13

These objects were generated by inserting an S/V returns time

history into the S/V radar return path (see Figure 3.3-2) through the

use of the PRIMITIVE INSVRT. Two scenarios were examined by variation

of the S/V returns time history (and with the object mix fixed as

previously indicated). The S/V returns time history for each are

illustrated in Figure 3.4-2. The first of these, the "single-spike"

scenario involves introduction of 75 S/V returns in the first 100 msec.

The second, the "double-spike" scenario, introduces 40 S/V returns in

the first 100 msec and 35 S/V returns in the interval from 1200 to 1300

msec.

The single-spike scenario presents a "worst-case" for loading. In

the absense of queueing, this scenario produces the maximum peak loading

for any portion of the process amongst all scenarios with the same total

number of S/V returns distributed over more than 100 msec. In

particular, NODE loading has a maximum peak for this scenario.

The double-spike scenario represents a more typical situation and.

in fact closely approximates a scenario which has been examined by

McDonnel Douglas in their simulation analyses.

3.5 Response Time Requirements

The performance requirements for the site defense processor to be

used in this study were provided by McDonnel Douglas Corporation. These

are response time requirements along certain processing threads. Only

unit level threads are of concern here. Table 3.5-1 presents the

Port-to-Port thread definitions from radar subsystem to radar subsystem

as defined by McDonnel Douglas in terms of TAP tasks.

Also indicated in this table are the threads which were modeled in

PAES (any thread can be modelled), and the corresponding nominal

response time requirement.

In using PAES, the set of PRIMITIVES of the form ".DTF" were used

to insert delays which yielded the required response times. This device

was important in maintaining the desired temporal evolution of the

3-14

(a) Single-Spike Scenario

1000

L 750
" _ 75 S/V RETURNS IN 100 MSEC

a-U,

cc 500
I-LU

250-

I0-I I

0 500 1000 1500
TIME IN SEC

(b) Double-Spike Scenario

1000 -

750

,.

(f 500-

I--
LU 40 s/v RETURNS IN ru -30 S/V RETURNS IN

250 100 MSEC 100 MSEC

0 T
0 500 1000 1500

TIME IN SEC

Figure 3.4-2. S/V Returns Time Histories For Two Scenarios

/

+ - k

Table 3.5-1. Port-to-Port Thread Definitions

Thread TAP Tasks Measured Nominal
by PAES Requirement

(msec)

Verify Return TRIP-TDRP-TRIP / 100

Track Initiate TRIP-TIRP-TSBT-TRIP / 50

Last TI TRIP-TIRP-TSBT-TFII- / 50
TREQ-TRIP

Normal and Post-Commit TRIP-TOTT-TRIP /(/)* 50 (25)
Track/Maintenance Track

Drop Track/Track Rate TRIP-TOTT-TREQ-TRIP
Change

Passive Discrimination/ TRIP-TOTT-TPOD-TRIP
Track to Discrimination
Turnaround

Active Discrimination TRIP-TOTT-TPOD-TREQ-TRIP
Request/Drop Track

Active Discrimination TRIP-TAOD-TPOD-TRIP I 25

Interceptor Guidance TRIP-TICT-TRIP / 20
and Track

Pulse Replacement/ TRIP-TRIP
Reschedule

Object Reacquisition TRIP-THAP-TRIP

*Endgame tracking has the move stringent requirement of 25 msec.

CVERAC
3-16

3.6 Use of PAES in Process Definition and Analysis

The simulation program PAES was used extensively in the preliminary

stages before architecture evaluation in arriving at a correct process

definition and in providing an evaluation of the inherent loading

requirements independent of any particular hardware architecture. In

the two subsections which follow, we describe the use of PAES in each of

these two areas.

3.6.1 Verification of Process Model

The process model is enbedded into the primitives in two

fundamental ways. The structure of the evolution and the relative

numbers of objects evolving at specific points in the process are

represented in the branching at the output of corresponding PRIMITIVES.

Simple analyses, presented in Appendix A, were used to deduce branching

or splitting parameters which would yield the correct mix of objects.

Secondly, the set of PRIMITIVES of the form ".DTF" were used to

introduce delays along each radar-radar thread to yield the desired

response time, as inidcated in Table 3.5-1.

PAES was exercised on increasingly larger segments of the process

to verify (and indicate needed corrections to) the process model. Final
confirmation is illustrated by (1) the accumulation of number of objects

at successive stages of the process, Figure 3.6-1; and (2) the thread

port-to-port response times displayed in Figures 3.6-2 through 3.6-7.

The latter figures show close agreement between modeled response times

and requirements. All figures here relate to the double-spike

scenario. Similar confirmation was obtained for the single-spike

scenario.

3-17

FIRST TI
75 ANIGLE GROUPS

B00681 -1 F!RST OT
14 0 OBJECTS

1 50______ _.__ (RED..,DANTS, G1OSTS,
150 FRAG!-,,TS, DECOYS L

RVs)

REDUNDANTS A14D
GHOSTS REM OVED

10 OTI - OT2
122 OBJECTS
(FRAGI.E,TS, DECOYS

oAND RVs)

50-
FRAGMENTS REMOVED
OT2 * OT3
102 OBJECTS
(DECOYS AND RVs)

0
0 12 OT3 - OT4

TIME IN SEC DECOYS REMOVED

32 RVs

Figure 3.6-1. Accumulated Number of Objects Processed at

Successive Stages

SVI3C

3-18

4.)
I.-
0

CC 0

0

to

Lq

~0
a-

LO

(U

LA-

3-19.

I-

th

C))

oo

4JJ

LA-

3-20

CL

Im
-us

C)4

.944

C)C

0.

CL

~LZ
044-

%0%

3-21

o to

* L

4.1

.@
1. n

Cl

(33S)~ 1..VdO U

3-22

ccU

ca,

41.

S-
01

- IA
4a)4

00

>41)

4.)

of so_
ICA

LL.

(33S) NOi1YvflU OV311HI

3-23

rEu

C)h

U

1-

CD IX
Eu

I.-

CLJ

-o c

CD

3-24

3.6.2 Process Loading Analysis

PAES has the capability to record flows through any set of queues

in the process. This capability was exploited to provide an analysis of

the process loading on various portions of the process associated with a

scenario, independently of any specificaton of hardware architecture.

We found this information to be extremely valuable in synthesizing the

hybrid architecture. It is interesting to observe that in this problem

maximal loading can be determined accurately by PAES. This is because

the thread response times are the duty cycle goals required for

processing the returned radar pulses. This is significant because the

tracking filters will be designed to perform best at a nominal update

rate. They will give the needed track accuracies. Higher update rates

give unneeded improvements in tracking accuracy. Thus by setting thread

delays (by inserting appropriate delays in the uDTF" primitives) we can

observe the characteristic system loading that is determine'j by the

selected scenario. This was the approach taken.

A second observation addresses the scenario. There is a bound on

the number of RV's that can be productively used against a single BMD

site. The fratricide effect provides one limit of the RV d-nsity to be

expected. Cost benefit analysis provides another. Thus, we can bound

the number of RV's this is required to be addressed in an attack

occurring over several seconds. The number of ghosts, fragments, and

decoys associated with a set of RV's can be estimated with good

accuracy. The question remains, what temproal distribution of this set

produces the heaviest loading on the site processor? The answer depends

on the architecture of the site processor. In a poor architecture,

loading on one thread might produce a bottleneck in the processing of a

second thread. However, assuming a responsive architecture

(specifically, one in which no queueing for processing occurs) the

loading is maximized by a single dense wave of RV's occuring within a

few milliseconds and representing a simultaneous launch. This

conclusion follows from that the fact that, under the stated

assumptions, the loading is a linear functional of the input SIV time

history. Therefore, maximum peak loading on any portion or all of the

process is obtained with a maximally peaked SIV time history.

3-25

In conformity with this observation, we have used, as a baseline, a

scenario with closely grouped RV's to determine the inherent processing

loading.

An issue of interest in characterizing the underlying process is

the sensitivity of the process to variations in the scenario. We have

examined this by running the PAES process model with a second scenario

that has two RV waves separated by approximately one second.

Samples of the loading - the TI and OT2 thread for the single and

double spike scenario - are provided in Figures 3.6-8 and 3.6-9. These

results were run with a simulation cycle time of 2ms. Loading is

presented for a smoothed value over a 60 ms interval. These smoothed

plots represent the realistic loading in an architecture with some

buffer elasticity (perhaps 5 msec of data) between functions.

A summary of the system loading generated by the single spike

scenario is given in Figure 3.6-10. Interesting features here are:

(1) Contributors to the total peak loading are TI, OT1, OT2, OT3,

OT4, RRA, MICRO and MACRO. The principal contributors are,

in order, OT1, then OT2. Not contributing are SV, OT5, IP

and IC.

(2) The loading patterns for RRA, MICRO, MACRO and all others

combined are very similar.

3.6.3 Architectural Implications

The response time requirements (Table 3.5-1) and the loading

assoicated with a scenario have implications for all hardware

architectures which might be considered. These implications are

examined here.

Thread response times lead to a processing requirement in terms of

a minimum cpu power (instructions per sec). Specifically, if the thread

response time requirement is T and the thread processing requirement per

i-lbA

F-.

L.J

43

4,, J1

0x

CJ'

N 4!

33S 3i3d Q3SS33OId SWU3I 0

3-27

clJ

0

L

0

03

A C.3

CIn

U4 4J
Ido

I- 0

u C4

oo 0 0

gn 0LA-
U, c'J @

33S UOd a3SS33Obd sunil3d

3-28-

4.60
S/v

3.85
TI L

12.64
OTI

7T2 1 .58 ,

5r .51 "

OT3 I Z .
I4.28

OT4

OT7.95
x7.34

. 6 5

RRA__ _ _ _ _ _ _ _
1l.98

MICRO _, ' ,I
,3.20

MACRO
y 34.05

ALL

i ni *,' I I n

0 1 2 3 4 5 6 7 8 9 10 11 12

SECONDS AFTER BEGINNING OF SCENARIO

y PEAK LOADING (MIPS)

- 50%0OF PEAK LOADING

NON ZERO LOADING

Figure 3.6-10. Load Phasing for the Single-Spike Scenario

.l-Q -
S "

work unit is p, then the minimum cpu power applied must be pIT.

Thread response-time-driven cpu requirements were c± culated for

each thread, with results given in Table 3.6-1. Opposite each thread

name, the "total thread EMLI" is given. This quantity is determined

from the instructions per work unit and instruction type for each

PRIMITIVE on the thread, excluding those related to the radar interface

functions of radar returns assimilation, micro and macro scheduling.

Specifically,

EMLI = [1.064 X floating point + .532 X integer]
primitives instructions/w.u. instructions/w.u.
on thread

(The rationale for this is provided in Section 4.1) To account for the

processing time involved in these radar related functions and for

communication delays, the response time available was reduced by 15 msec

for most threads, and by 10 msec for the interception threads, OT5 and

IC. In the latter cases, it is assumed that priority techniques can be

applied, especially in scheduling, to minimize delays and thereby make

the indicated processing times available.

The derived cpu requirements are in the range of .10 to .35 MIPS

far all threads, except for OT5 and IC. There the requirements are .82

and 1.22 MIPS, respectively.

Thread loadings corresponding to a particular scenario lead to a

second set of cpu requirements, but in this instance, the requirement is

for total cpu power available whether provided by one or by several

machines. To derive these requirements, the "total thread EMLI" is

multiplied by the peak workunit rate experienced by that thread in the

chosed scenario. Results for both the single spike and double spike

scenario are presented in Table 3.6-2. By comparing these results with

those of Table 3.6-1, it can be seen that

6 the loading-driven cpu requirements exceed the response-time-

driven cpu requirements for every thread. This fact implies

YURAC
VE3-

I •

Table 3.6-1. Thread Response-Time-Driven Cpu

Requirements

Thread Total Response Time Allocated Required Power
Thread Requirement Processed Time (MIPS)
EMLI* including RRA, Excluding RRA,

MICRO, & MACRO MICRO, & MACRO
(msec) (msec)

SV 6 577 50 35 .19

TI 10 058* 50 35 .29

Final TI 9 044** 50 35 .26

OTI, OT2,
OT3, OT4 12 236 50 35 .35

OT5 12 236 25 15 .82

IP 7 714 100 80 .10

IC 12 236 20 10 1.22

* 1.064 x floating FII + .532 integer MLI, excluding radar functions

** TI/OT correlation is not on the final TI thread

*** based on lower response tiene requirement

3-31

• " t

Table 3.6-2. Thread Loading-Driven Cpu Requirements

Thread Total Thread Peak Loading
EML I _

Single-Spike Double-Spike

time w.u./ MIPS time w.u./ MIPS
(msec) sec (msec) sec

SV 6 577 60 700 4.60 60 367 2.41

TI 10 058 300 383 3.85 200- 383 3.85
1380

Final TI 9 044 420 133 1.20 300- 133 1.20
1400

OTI 12 236 1000 1033 12.64 1680 1017 2.44

OT2 12 236 1620 600 7.58 1980 500 6.12

OT3 12 236 1980 450 5.51 2500 383 14.69

OT4 12 236 3000 350 4.28 3500 317 j3.88

OT5 12 236 6500 650 7.95 7400 517 6.33

IP 7 714 3000- 17 0.13 3000- 17 0.13
7000 8000

IC 12 236 8400- 600 7.34 10500 583 7.13
10200

MVERAC

II

that parallel processing would be useful, since smaller

(lower cpu) machines could then be used.

Close examination of the loading near the time of the peak total

loading is useful. Figure 3.6-11 provides details in the relevant

interval.

0 The separate radar interface functions, RRA, MICRO and MACRO

and the combined thread oriented processing each peak at very

nearly the same time. Therefore, allocation of these four

groups of processing to distinct NODES will not require any

more total cpu power than in the minimum cpu environment of

one central NODE.

a The peak loading is determined by the pattern of the TI, OT,

(except OTS), OD and object correlation (OBJCOR) functions

since the radar-interface function loadings are fairly

uniform in the relevant interval and the SV, OT5, IP, and IC

do not contribute at all. As noted previously, OTI is the

principal contributor. In order to minimize cpu

requirements, process design should therefore be directed to

those functions noted as determining the peak load.

In summary, the following features of the process are significant

for hardware architecture design:

Feature 1: Response time requirements are much less than total

loading requirements. Thus, a parallel architecture is

appropriate.

Feature 2: Bus response, memory access, and operating system overhead

strongly impacts the processing speed required to do the

OT5 and IC functions.

3-33

zz

Li Lu

4JJ

4-4b

- 0

4i J

- a,

4-J
4- -

on
rv,

UIW Noizii -

.0 ofi

U, 0 o -3-34

Feature 3: The thread processing requirements for almost all
functions are under 0.5 MIPS. Thus, advanced high speed

processing architectures do not have to be used for these

functions.

Feature 4: OTI loading uses over 50 percent of the processing power

required during the maximum loading of the system.

3-35

I

4.0 EVALUATION OF NETWORK ALTERNATIVES

The principai ,urpose of this study has been to synthesize and

evaluate an "optimal" computer network architecture for supporting the

BMD data processing subsystem. To arrive at a sound basis for this

endeavor, the process has been thoroughly examineo, as documented in the

previous section. Further, previously developed approaches to

architecture were assessed. In this section, two such architectures are

examined - Centralized and Thread. The remainder of the discussion is

devoted to the description of and evaluation results for the Hybrid

Architecture that was synthesized.

4.1 Evaluation Procedure

Before addressing the evaluation results themselves, we describe

here the procedure that was used in arriving at evaluations of network

alternatives. An overview of this procedure is illustrated in Figure

4.1-1.

".ISSO% AO.SIS

PROCESS CEFINITION

IIV

Figure 4.1-1. Network Analysis Procedure

4-1

II'v I T 'E

PRMESSI% ~ A'4ETUR

Mission analysis and process definition, as described previously in

Section 3, provided a formal description of the process, scenarios and

requirements. These served as two of the major input segments to the

Processing Architecture Evaluation Simulation (PAES). In the instance

of the previously developed candidate computer architectures -

Centralized and Thread - available descriptions were used to identify

necessary data to define architectural inputs for PAES.

In the instance of the Hybrid Architecture, process loading

analysis (Section 3.6) and results from the assessments of the two other

architectures were used to synthesize the design. The corresponding

architectural inputs for PAES were then identified.

In using PAES, two aspects of the characterization of architectures

are worthy of note: (1) machine speed, and (2) representation of

architectural effects.

In the VERAC model of the PRIMITIVES, algorithm size is set in

terms of MLI's with the followng first cut assumptions:

Assumption 1: The CDC 7700 operates at 12.87 MIPS when executing

a specified "BMD mix" of software.

Assumption 2: Because of the optimization in the design of the

control sections of the 7700, fixed point

instruction mixes are executed about as fast as

floating point instructions, i.e. at 12.87 MIPS.

Assumption 3: The full process simulated on PAES has the same

instruction mix as the uBMD mix" used for bench

marking.

These three assumptions allow use of McDonnell Douglas-generated timing

data for the determination of algorithm size.

Algorithm size (in MLI) 12.87 Ta"

4-2
S

where: Ta is the execution time for the algorithm code set as
measured in the CDC environment (in seconds).

A further set of assumptions allow us to relate algorithm size to

the performance parameters appropriate for the distributed processing

environment:

Assumption 4: Smaller computers perform at half the rate for

instruction mixes rich in floating point operations

(filtering, correlation) compared with mixes that

are predominately fixed pont (e.g. formatting,

control logic).

Assumption 4 indicates a skew in total computational time required

towards the time required by floating point algorithms as we drop from

very large computers to smaller computers. A transform paramter x is

used to adjust for this skew:

x = Equivalent MLI, (EMLI) for the floating point

instruction mix.

0.5 x = Equivalent MLI for the fixed point

instruction mix.

Parameter x has been determined by holding constant the total number of

equivalent instructions executed in a scenario for the CDC 7700

implementation and the distributed processing implementation.

Experimental evaluation of x using simulation PAES has given:

x = 1.064

Note, as an aside, that this experiment has given a measure of the mix

of floating-point type and fixed-point type algorithm instructions

executed during a scenario. Let f be the fraction of executed

instructions that are of the floating-point-mix type and k be the number

of instructions. Then

1.064fk + .532 (1-f)k .k,

from which we find,

f - .88.

MVIRAC
4-3

Thus, 88 percent of the site defense instructions executed are in

algorithms of the floating-point-type.

We have used the equivalent CDC 7700 MLI, designated EMLI, as the

performance measure for architectures

1 algorithm step] - 0.532 EMLI
Lof fixed-point type
I algorithm step 1.064 EMLIof floating-point type

If it is assumed that the BMD instruction mix is similar to a

standard benchmark mix such as the Wheatstone, then the results reported

herein, in EMLI, can be held to be equivalent to benchmarked

instructions (e.g., for example, assuming the CDC 7700 would test at

12.87 MIPS using the Wheatstone benchmark). However, becuase of the 88

percent content of arithmetically oriented code in the BMD, the standard

benchmarking would be expected to give a higher number (e.g., 13.5 - 15

MIPS for the CDC 7700 by the Wheatstone). We will present results with

EMLI because of the lack of benchmarks that relate the BMD code to a

standard. The reader may interpret these results as benchmark MIPS, but

the above caveat should be kept in mind.

Computer architectures, with associated communication buses, have

finite capabilities for processing and transferring data. In PAES,

these effects are represented by architectural effects models

corresponding to

0 operating systems

* bus protocols

* resource access (e.g., shared memory).

PAES was developed for this effort to have an essential but limited

capability for representing these effects. In particular, a simple,

"fixed allocation" operating system model was implemented which assigned

a fixed processing power to each PRIMITIVE thorughout the scenario.

Generally, the allocation to each PRIMITIVE was sufficient to avoid

4-4

* /

.

queueing. Thus, we did not attempt to identify congestion effects of

realistic, finite computing resources. Rather, we measured the cpu

requirement necessary to avoid queueing.

Our assessment of distributed processing alternatives lead us to

believe that delays in data transfers would be substantially less than

the processing times on threads. Correspondingly, we did not implement

delay models for bus protocols or resource access, and therefore

developed no measures from PAES for these effects. In the discussion of

the Hybrid Architecture, however, we do address bus communication delays

through simple analysis.

It is to be emphasized that PAES is capable of accounting for

delays caused by queueing and architectural effects. Realistic

evaluation of such effects only requires a modest further development of

the associated architectural effects models.

4.2 Evaluation of the Centralized Architecture

Orginal development of the BMD data processing subsystem was based

upon implementation on a single large computer - the CDC 7700. Our

first architectural evaluation was of a representative Centralized

Architecture. The key feature is the sharing of a single cpu by all

processing functions. In this respect, it is noted that this deviates

from the two-cpu architecture of the CDC 7700. Further, no attempt was

made to represent other CDC 7700 environment effects, such as the use of

TOS (Tactical Operating System) and the data and instruction code

transfers between the LCM (large core memory) and each of the two SCMs

(small core memories).

Results are displayed in Figure 4.2-1 for the single-spike and

double-spike scenarios. There, 60 ms smoothed cpu utilization

requirements are displayed. Peak requirements are seen to be 34.05 MIPS

for the single-spike scenario and 32.50 MIPS for the double-spike

scenario.

4-5

-I

C14

LS0
tn .9

'U

@3

C) En

0 @

C-4~

c Ux
.0 u

* o

Ln

CDC

4-6,

The centralized environment has the advantage of having the full

cpu processing available to all processing needs. With a responsive

operating system (such as TOS), processing power can be allocated as

needed in the particular scenario. This flexibility is had at the cost

of a complex operating system which can introduce very substantial

overhead (as is the case in the CDC 7700 implementation). To provide

some means of comparison with the other architectures, we assume an

overhead cost of 40 percent, so that we obtain the total cpu

requirements as indicated in Table 4.2-1.

Table 4.2-1. Cpu Requirements for the Centralized Architecture

Scenario Application 40 percent Total cpu
Requirement Overhead Requirment

(MIPS) (MIPS) (MIPS)

Single-Spike 34.05 13.62 47.67

SDouble-Spike 32.10 12.84 44.94

4.3 Evaluation of the Thread Architecture

The first significant development of a distributed computer network

alternative to the CDC 7700 architecture was the Thread Architecture

design made by McDonnel-Douglas [3]. The unit-level portion of this

architecture is displayed in Figure 4.3-1. There, 17 computers and the

major control flow interactions are indicated.

In Figure 4.3-2, the allocation of PRIMITIVES to the nine

functional NODES of the thread architecture are indicated. (The

details, i.e., specification of PRIMITIVES, can be seen by examining

Figure 3.3-2 which is a larger version of Figure 4.3-2 with PRIMITIVE

names.) It will be noted that two NODES contain more than one

computer: NODE TI contains two computers (Nos. 5 and 6); and NODE OTOD

contains eight computers (Nos. 8-15). In using PAES, we measure NODE

cpu requirements and leave details of local NODE operating systems for

future analysis.

(VIRri
4-7

_

SV TI

0 (OT CONTROL M MICRO

~0

'To"
MACRO

IC_

IP

Figure 4.3-1. Thread Architecture

Results of PAES evaluations for the two scenarios are given in

Table 4.3-1. Summing the peak NODE cpu requirements yields requirements

of 51.83 MIPS for the single-spike scenario and 45.01 MIPS for the

double-spike scenario. We have also attempted to account for operating

system overhead here. Since the number of functions supported within

each NODE is much smaller than in the centralized environment, we have

assigned an overhead of 20 percent in order to arrive at total cpu

requirements. These requirements are also indicated in Table 4.3-1.

Further detailed results in the form of sampled and smoothed cpu

requirements for each NODE and each scenario are provided in Appendix C.

4-8

NINE PROCESSING NODES

ONE "RADAR" NODE

RADAR
'-1-*-3

- 1r1O

ISVGE MACR
4> cc

TI 6

CI

OD

IC6

Figure 4.3-2. Allocation of PRIMITIVES to

NODES of the Thread Architecture

(BVERAC
4-9

Table 4.3-1. Cpu Requirements for the Thread Architecture

(a) Single-Spike Scenario

NODE Application 20 percent Total
Requirement Overhead cpu Requirement

(MIPS) (MIPS) (MIPS)

RRA 0.65 0.13 0.78

MACRO 3.20 0.64 3.84

MICRO 1.98 0.40 2.38

SV 4.12 0.82 4.94

TI 3.72 0.74 4.46

REDUND 1.43 0.28 1.71

OTOD 28.92 5.78 34.70

IC 7.45 1.49 9.94

IP 0.36 0.07 0.43

TOTAL 51.83 10.34 62.17

(b) Double-Spike Scenario

NODE Application 20 percent Total
Requirement Overhead cpu Requirement

(MIPS) (MIPS) (MIPS)

RRA 0.59 0.12 0.71

MARCO 2.91 0.58 3.49

MICRO 1.82 0.36 2.18

SV 2.24 0.45 2.69

TI 3.63 0.73 4.36

REDUND 1.35 0.27 1.62

OTOD 24.66 4.93 29.59

IC 7.45 1'.49 9.94

IP 0.36 0.07 0.43

TOTAL 45.01 9.00 54.01

4-10

!

4.4 Design and Evaluation of the Hybrid Architecture

In this section, we present in detail a recommended architecture,

which we shall refer to as the Hybrid Srchitecture due to the mixture of

types of network architectural elements present. This architecture was

developed by VERAC as a result of its analysis of the process to be

supported, and its assessment of other architectures. Again, PAES

evaluation of cpu requirements are presented. Further, in this

instance, we address additional design details related to the

organization of control, bus loadings and database management.

Figure 4.4-1 presents this Hybrid Architecture. The principal of

the design is to use a parallel computer architecture with a central

memory for the data base for the bulk of the processing, and to use

special purpose processors to handle control and scheduling.

4.4.1 Functional Partitioning

Figure 4.4-2 presents the functional partitioning for the system.

The RRA and SCHEDULER functions are set in distinct nodes. A parallel

set of THREAD processors is represented as the AGGPRO NODE. Two

additional processor types are included in the system model of Figure

4.4-1: the Unit Resource Module (URM) and the Memory Processor (MEM).

These have not been sized. However, their functions are described in

following subsections.

4.4.2 PAES Evaluation of CPU Requirements

Results of PAES evaluations for the two scenarios are given in

Table 4.4-1. Summing the peak NODE cpu requirements yields requirements

of 34.10 MIPS for the single-spike scenario and 32.55 MIPS for the

double-spike scenario. Note that these figures are only slightly larger

than the results for the Centralized Architecture. As was observed in

the loading analysis of Section 3.6, the organization of processing

involved in this Hybrid Architecture retains almost all of the

eDVERAC
4-11

..

CD4

IAJh

cc LLJ co

ca.-

0

& a,
I -e-I + .4.,L

O) Co w !

0- 00 0 0. L.

Il W 0L u c

a-a
LI i U

I a' ox

4n 0 U

4-1

RADAR

RAb POISR ITELF

1a

R I DE

%Gt PR NODE

a~w# 1A Z

Figure 4.4-2. Allocation of Primitives to Nodes of the Hybr id Architecture
4-13

Table 4.4-1. Cpu Requirements for the Hybrid Architecture

Single-Spike Scenario

NODE Application Other Total
Requirement Loading cpu Requirement

(MIPS) (MIPS) (MIPS)

RRA and CONTROL 0.65 0.50 1.05

SCHEDULER 5.18 0.20 5.38

AGGPRO
(thread processors) 28.27 2.83 31.10

TOTAL 34.10 3.53 37.63

Double-Spike Scenario

NODE Application Other Total
Requirement Loading cpu Requirement

(MIPS) (MIPS) (MIPS)

RRA and CONTROL 0.59 0.50 1.09

SCHEDULER 4.73 0.20 4.93

AGGPRO
(thread processors) 27.23 2.72 29.95

TOTAL 32.55 3.42 35.97

4-14

/,

efficiency of shared processing associated with a single cpu

architecture. The critical assumption is that the CONTROL function can

be designed to efficiently use the multi-processor AGGPRO NODE.

Also indicated in this table are "Other Loading" cpu requirements.

In the RRA and CONTROL NODE, this other loading corresponds to the

control of radar return pulse processing, as described further in

Section 4.4.3. In the SCHEDULER NODE, the other loading is associated

with control of the PR bus, described further in Section 4.4. And for

the AGGPRO NODE, we have assigned an overhead of 10 percent. This lower

figure (compared to 20 percent for Thread Architecture nodes) is related

to the very simple operating systems required for thread processors.

All the complex "tasking" is taken care of in the RRA and CONTROL node.

4.4.3 RRA and CONTROL NODE

The RRA and CONTROL NODE provides the validation check of a radar

return (VLD.). Additionally, this processor schedules use of the local

processors and cancels local tracks, (OTRCHK, FRGCHK, DCYCHK). Figure

4.4-3 depicts the data flow and processor structure for the recommended

approach.

When a pulse transmission request is sent to the radar by the

SCHEDULER, the SCHEDULER also forwards a packet of descriptive data to

the RRA processor. This packet contains the related track or group ID

(it is named the "ID Packet") and the pulse-type data. The RRA

processor uses the track ID information to search a list of track kill

requests. If a track is to be killed, this information is put in the ID

Packet in preparation for processing the pulse that is to be received.

The first function performed by the RRA on a return pulse is the

validity check against the ID Packet (VLD.). The ID Packet is appended

to the return information at this point.

The second function performed by the RRA on a packet is the

assignment of the return to a THREAD Processor for processing. The

assignment algorithm uses a PROCESSOR STATUS list kept by the RRA

processor.

$ VIRAC
Inceq4-1 k

IM-013-81-6

RADAR PULSE
RETURN DATA

VALIDATION ID PACKET

RETURNS KILL TRACK
COMMANDS

SCHEDULING 1
SCHEDULERD

RETURN PROCESSOR
(PULSE PACKET) STATUS

(a) Data Flow

RADAR

0 *2.5 Mips RRA jRC BUS
9 8k/16b INST MEM VALIDATION
* 8k/16b DATA MEM STAGE

* 2.5 MIPS RRA
* 8k/16b INST MEM CONTROL
* 8k/16b DATA MEM STAGE

(b) A Special Purpose Two-Stage Processor Implementation

Figure 4.4-3. The RRA and CONTROL NODE Structure

4-16

THREAD Processors are not, in general, assigned to specific

function types or to specific tracks. These processors are viewed as

being structured to perform any of the functions contained in the THREAD

NODE. the RRA Processor selects a currently idle THREAD processor and

sends the pulse return with appended ID to this processor. The packet

so transmitted is called a "Pulse Packet". There are two possible

exceptions to this treatment of a pulse return that can be considered.

We have included as part of the RRA processing, in our approach,

the interdiction mechanism required to drop a track. The kill request

information is simply included with the ID and appended during VLD.

processing. During scheduling, a kill request in the packet is noted

and the RRA responds by sending off a packet indicating that the track

has been killed (i.e. not forwarded for processing). This approach

integrates the track kill mechanism without requiring a new or special

algorithm stage.

The second exception to be considered is the case for returns that

are associated with intercept (OT5 tracking and IC). This processing is

sensitive to memory access times. Thus, it may be appropriate to

transfer to, and maintain the target and interceptor tracks in, the

memory of a THREAD processor. In this case, the processor identity

would be carried in the ID Packet. The RRA processor would note the

assignment in the ID appendage to the return and would route the return

accordingly.

Fault tolerance is a major factor in the processing architecture

recomimended. The parallel THREAD processors can perform self-test as

assigned by the Scheduler. Processor status determined by the

self-tests can be returned to the RRA Processor and entered along with

the measure of loading into the THREAD Processor Status Table. Also,

fault detection by a THREAD Processor would be reported in this way.

This structure allows faulty THREAD processors to be removed in

real-time without significant impact or overhead on the ongoing system

performance. Since the main segment of the system is the set of THREAD

processors, this structure relieves much of the cost and risk associated

Sji ning extremely reliable individual processors.

4- I,

/J

4.4.4 The RR BUS

The RR BUS transports the pulse return data ("Pulse Packet") from

the RRA Processor to the assigned THREAD Processor. The MEM Processor

also picks up the Pulse Packet. The RR Bus transports track data from

MEM to the THREAD Processors as required. Additionally, control and

status data is returned via the RR BUS to the RRA Processor. The RR BUS

bandwidth is determined by the maximal pulse rate. The principal loads

on the RR bus are the pulse return packets and the track records used by

the thread processors. Each packet and track record is taken to be 150

32-bit words, i.e., 4800 bits. The bandwidth requirement shown in Table

4.4-2 is based on these data sizes. This BUS could be easily

implemented with a 32 bit wide, lMwps architecture. This architecture.

would easily support a radar rate of as high as 10,000 pps.

Table 4.4-2. Bandwidth Requirements at

2000 pps for the RR BUS

Function Rate

Pulse Returns 9.6 Mbps

Track/Group Packets for Filtering 9.6 Mbps

Correlation Track Packets 4.8 Mbps

(10 correlation candidates /request a

100 requests/sec.)

Status Reporting (320 b/report) .64 Mbps

Total 24.64 Mbps

4-18

-- ,=

The RR Bus is under the RRA Processor control. A simple protocol

is to have capacity assigned in TOMA fashion for pulse returns and

additional capacity available by demand access for correlation data

transfer. This structure is shown below.

IM-013-81-7

1 FRAME

a I a I bi bic dlala I-pas
t

a: Pulse Packet (150w)

b: Track/Group Packet (150w)

c: Correlation Packet (150w)

d: Status/Request Return Set (lOw/Thread Processor)

This simple protocol can work effectively because of the very uniform

rate of radar returns. This protocol would provide a transfer in under

1 ms for each packet.

4.4.5 THREAD Processor

The THREAD Processors are collectively given the capability to

perform all of the functions in the AGGPRO NODE as specified in Figure

4.4-2. These are:

(1) S/V Processing

(2) TI Processing

(3) OT Processing

(4) Correlation/Discrimination

(5) Intercept Planning

(6) Intercept Control.

The total instruction code for the thread functions is estimated to

be 160,000 32-bit words. If each THREAD processor has instruction and

data storage capability of 256,000 words, every THREAD processor could

have the capability to perform every thread processing function. If

(MVIRAc
4-19

II II - ' : ,," /

less memory is available, it would be necessary to allocate portions of

the thread functions to THREAD processors. By taking note of the load

phasing as depicted in Figure 3.6-10, it should be possible to provide

an allocation which requires only slightly more total cpu capacity than

the minimum necessary if all THREAD processors were fully capable.

The specific function or "task" to be performed by the processor is

determined by the RRA when it schedules return processing and other

activities. Typical tasks are the filtering and processing associated

with a TI or OT return. Other tasks assigned are correlation, intercept

planning, and intercept control.

Pulse packets are sent to the assigned processor by the RRA. These

packets are also received by the Memory Processor, MEM. The MEM

processor retrieves from the track data base the track information used

in filtering. This data is forwarded, as a "Track-Packet" or

"Group-Packet", on the RR BUS to the assigned THREAD processor. This

scheme allows the memory access to be carried out while the THREAD

processor is unpacking the Pulse Packet. Figure 4.4-4 shows the data

flow that is associated with pulse return processing.

The THREAD Processor processes the pulse return data. Typically a

new pulse request is generated (.PLS) as well as an update made to the

track/group data base. This is shown in Figure 4.4-4. The THREAD

Processor outputs are transmitted on the Pulse Request (PR) BUS.

Several control sequences are required to implement the flow of

control. These relate to:

(1) Tracks that are killed directly during the pulse return

processing:

* TIBDED Angle Group Deletion

0 OTI Ghost Detection

0 OT5 Intercept Complete

0 AOD Decoy Detection

0 MG (IC) Intercept Complete

4-20
*

* f

IM-013-81-8

PULSE PULSE
RETURN COMMlAND

RRA MEMSCHED

PAKTTRACK/GROUP PULSE
PACKET REQUEST

G@DATABASE

EVENT SEQUENCE

I Pulse request to assigned processor and memory

2 Track accessed from database to assigned processor

3Next pulse request and, @completed status to RRA

Figure 4.4-4. Data Flow for Pulse Return Processing

(MVERAC

.t-~ I

(2) Correlation:

0 TIOT

0 OBJCOR

(3) Discrimination

* POD, Passive

* AOD, Active

(4) Intercept Planning

* Intercept Plan Status Output

0 Implementation Response

Tracks that are killed directly during pulse return processing (as

contrasted with killed because of correlation or discrimination

Iprocessing) are deleted by means of a marked track data base update sent
from the THREAD Processor to the MEMORY Processor -- just as occurs

during a normal data base update as shown in Figure 4.4-4. The MEMORY

Processor either deletes the track entry or, if required, leaves the

marked entry in the database for use by the URM.

Correlation processing is shown in Figure 4.4-5. The correlation

functions are not as response-time sensitive as the pulse return

processing functions. Thus, the objective of the approach is to

minimize conflict with these higher priority functions. This is

accomplished by two features of the approach: (1) Scheduling of

correlation is by the RRA. Thus, the priority of the function is

weighted against other system needs; and (2) The sifting of the track

database for "close" tracks is done off-line. It would be appropriate

for the RRA algorithm to age the request to allow time for this database

sift.

A wide associative memory is a natural structure for the track

database. With this structure the MEM Processor would have a very easy

time marking the "close" tracks to be accessed.

4-22

L -A

.... . ' ' -- ' i- -

IM-013-B1-9

RRA E

THE MMORYPROCSSORCORRELATION

CORRELATION
REQUEST
(TOT OR OBJC\OR)

TRA

(a) Initiate Correlation
(TIOT OR OBJCOR)

PACKT CORELAIONDATABASE

CRRELAIN TRC UPCDDIATE

POSIL TRAC
(AKTCORRELATION b orlto xcto

FigureLE 4.45. Coreato Processing

POSSIBLE 4-23

KILL EQUES

When a THREAD Processor is assigned for correlation, the MEM

Processor simply transfers the track to be correlated, and the

associated "close" tracks. The THREAD processor performs the

correlation, updates the database and, if appropriate, request that the

RRA kill the track.

A second approach is to have the Memory Processor perform the

correlation. However, this would put a heavy additional computation

load on the processor. We believe that a sleek special processor

oriented solely toward database management will prove most cost

effective in this area.

Passive discrimination normally (.975) results only in an update of

the database that indicates that the object remains unclassified (see

Figure 4.4-6). However, fragment identification would cause a kill

track request to be issued to the RRA. Also, certain track

characteristics cause the initiation of active discrimination.

Active object discrimination is a pulse return processing thread

and is controlled identically to S/V, TI, and OT pulse return

processing. This processing has a longer response time requirement.

Thus, it has a lower scheduling priority.

Intercept planning is initiated from AOD. This could either be

initiated by a request to the RRA Processor or possibly be included

within the AOD processing task.

4.4.6 Pulse Request (PR) BUS

The PR BUS transports data between the THREAD processors and the

Memory Processor (MEM) for update of the database. This BUS also

carries Pulse Request Packets to the SCHEDULER. The loading on the bus

can be upper bounded by examining the maximum pulse rate of the radar.

At 2000 pps the BUS loading would be:

4-24

/

1M-013-81-10

RRA MEM

(POD
REQUEST

TRA

(a) Initiation of Discrimination

DATABASE

O32PULSE 3UPDATE
PACKETT CAN
(POD) PASSIVE DISCRIM

POSSIBLE AD[
9 PULSE REQUE!

POSSIBLE TRACK THREA
KILL REQUEST

(b) Passive Discrimination Execution

Figure 4.4-6. Discrimination Processing

4-25

M AD-AIOA 589 VERAC INC SAN DIEGO CA F/6 15/3.1
AN ANALYS IS OF MMCS NETWORK ARCHITECTURES TO SUPPOR T THE DATA P--ETC(U)
DEC AS0 J C TIERNAN DASS60-AR C 0017,

UNCLASSIFIED R-00AA8 NL3ffffffffffff

11111 1.5

* I MI ~ OCOPY R[SO1U 1ION I I H (HART

A;. 4 I A D~I ''

Pulse Request Packets (1600b/packet) 3.2 Mbps

Database Updates re pulses 9.6 Mbps

Other Database Updates (Correlation .48

and Discrimination)

TOTAL 13.08 Mbps

If the same bus architecture was used as with the RR BUS (1 Mwps/32b),

capacity is available for a flexible demand access protocol and for a

significantly higher radar pulse rate. This is within present

technology limits.

4.4.7 SCHEDULING Processor

The Scheduling Processor takes pulse request packets and schedules

pulses to the radar on a priority bases in accordance with pulse rate

and energy constraints. The rate and energy constraints are set by the

URM Processor and downloaded by means of the Resource Control (RC) BUS

to the Scheduling Processor (see Figure 4.4-1).

The Scheduling Processor formats and sends pulse commands to the

RADAR. It also sends, for each pulse requested, an ID Packet by means

of the RC BUS to the RRA Processor.

The applications loading for the SCHEDULER is slightly less than 5

MIPS (Table 4.4-1). However, the functional requirement can be divided

into MICRO and MACRO Scheduling stages in order to lessen the cost of

the implementation. Thus, two serial 2.5 MIP processors appears to be

an attractive implementation of this NODE.

4.4.8 Memory Processing/Database Structure

The architectural approach of Figure 1 includes a special purpose

Memory Processor (MEM). This processor performs the following functions:

(1) Responds to Pulse Return Packets containing radar return

information by fetching and placing the appropriate

4-26

... *1 . .Iml n.._.

Track/Group database entry on the RR BUS or by deleting

killed entries.

(2) Responds to Database Updates Packets by updating the related

entry or by deleting killed entries, if appropriate.

(3) Responds to Correlation Notices by searching the track

database for objects that are close to the object to be

correlated. Objects that are found to be "close" are tagged

or noted in a list in preparation for retrieval.

(4) Responds to Pulse Return type packets that indicate

correlation or discrimination by placing the track entry and

related entries on the RR BUS.

(5) Responds to URM queries oy placing requested track data on

the RC BUS.

The memory processor is given functional responsibility only for

processing that is intimately associated with the management of the

central database.

There is a natural organization of the database memory into

addressable words of 4800b/w.--the size of a single track or group

entry. 11 or 12 bits of address would be required with this structure.

The address might easily correspond to the track number. Content

addressability is required for rapid determination of "closeness" for

the correlation approach that we have advanced.

(MVRAC
.A A"

5.0 CONCLUSIONS

The Hybrid Architecture advanced here offers a number of singularly

attractive characteristics:

(1) The approach allows the shifting of the functions addressed

by a computer during a scenario so that the system loading

remains balanced, and no processing capability is idle during

peak loading.

This characteristic depends on the centralized pulse-return

scheduling function located in the RRA, to retain the

simplicity of design, and the centralized database structure.

(2) Fault tolerance is embedded in the parallel design. THREAD

processors are envisioned as performing constant on-line

testing. When a fault is reported by a orocessor to the RRA,

this THREAD Processor is immediately descheduled. The

problem of providing high processor reliability is then

concentrated on the special-purpose RRA, MEM, and SCHEDULING

processors.

This characteristic depends on the centralized scheduling and

the completely redundant structure of the proposed THREAD

processors.

(3) The computing speed of the THREAD processors need not be over

0.5 MIPS, except for end game processing, where 1.25 MIPS

processors are required. Thus, the actual capability

selected for these processors would be based on a

trade-analysis of cost, redundancy, and operating system

complexity. Thus, there is an opportunity to minimize cost.

(4) Maximum loading of the processor segments is determined by

the radar pulse rate limit. Thus, simple protocols for the

BUSSES, and MEM, RRA, and SCHEDULING processors can be

implemented.

QVIRAC
im o~(

The architecture requires a 1 Mwps at 32b/w BUS on the input

and an identical BUS on the output. Given 10

accesses/pulse-return as a bound, 20,000 access/sec (50

u-sec/access) are required to support a 2000 pps radar rate.

These data and access rates are easily obtained with present

technology.

(5) Both the RRA and SCHEDULING processors are special-purpose

processors with control structures dedicatd to performing the

required algorithms. These processors, and the MEM

processor, would be designed with emphasis on fault

tolerance. The RRA and SCHEDULING processors both are

implemented as two-stage processors. The URM might also be a

special purpose processor.

The architecture can be contrasted with the Thread Processing

IArchitecture or the Centralized Architecture that were also examined in
this study.

The Thread Architecture has a limited number of functions assigned

to each computing NODE. This requires that redundancy be added to the

NODE structure in order to achieve high reliability. The redundancy can

be provided for a NODE either internally to each processor, or by

providing multiple processors. Also, distinct hardware and software

components may be required for different NODES, increasing the cost and

complexity of design and development. A Thread Architecture has the

characteristic that substantial application processing capability is not

being used at the maximum loading point in the worst-case scenario.

The Centralized Architecture has the major fault of not taking

advantage of the response-time/throughput loading disparity

characteristic of the Site Defense Problem. The processing power must

support the peak throughput loading. A very powerful and costly

processor must be provided to meet this load. Managing the central

processor requires a significant operating system overhead in addition.

5-2

VERAC has analyzed the loading and throughput requirements for the

BMD Site Defense Processor. This analysis has motivated the development

of an approach to the processing architecture that is characterized by

parallel processors scheduled in real-time to perform needed functions.

The approach also depends on a central, track database managed by a

dedicated processor, and on a single scheduling and control point.

I.

VIRAC
5-3

REFERENCES

(1] "Computer Program Configuration Item Preliminary Part II

Specification Engagement Software, Volume II, Books 1, 2, and 3,"
TRW CI 11982-10751019, dated 22 October 1973.

[2] "BMD System Technology Program Product Specification for Computer

Program Engagement Software, CR3, Volume II, Books 1, 2, 3, 4, and

6," TRW CI 17773-10751019B, dated 1 July 1973.

[3] "Advanced Data Processing Subsystem Investigation, Mini/Micro

Computer Systems Evaluation Results," Volume XVII, MDAC Document

No. MDC G8418, 7 December 1979.

[4] "April, 1978 Process Design Snapshot Report for Cycle 6 TAP," TRW.

5-4

*I

Appendix A

Detailed Process Description

A-i

* I I

This Appendix provides a functional representation of a portion of

the BMD terminal defense data processing. The portion represented

includes radar assimilation and scheduling, S/V return processing, angle

group tracking (track initiation), object tracking and discrimination,

intercept planning and interceptor control.

The functional representation consists of a set of PRIMITIVES, each

of which is intended to represent a logically cohesive unit of

processing. Each PRIMITIVE indicates processing inputs, outputs,

processing load (CDC machine language instructions or MLI), significant

accesses to data files, and the evolution of instances at the output of

each PRIMITIVE.

This process description was derived from available documents, from

extensive technical discussions with McDonnel-Douglas personnel

(particularly Dr. Shiang Liu), and, where necessary to fill gaps, from

estimates based upon a general understanding of the problem

environment. In particular, the sources are as follows (and are

referenced to the associated number in the remainder of this appendix):

References for data items

[1] "Computer Program Configuration Item Preliminary Part II

Specification Engagement Software, Volume II, Books 1, 2, and

3," TRW CI 11982-10751019, dated 22 October 1973.

[2] "BMD System Technology Program Product Specification for

Computer Program Engagement Software, CR3, Volume II, Books

1, 2, 3, 4 and 6," TRW CI 17773-10751019B, dated 1 July 1978.

13] "Advanced Data Processing Subsystem Investigation

Mini/Micro Computer Systems Evaluation Results," Volume XVII,

MDAC Document No. MDC G8418, 7 December 1979.

(4] "April, 1978 Process Design Snapshot Report for Cycle 6 TAP,"

TRW.

A-2

15] Private communication with S. Liu, McDonnel-Douglas.

[6] Estimate

A-i Processing Loads (Timing Models)

Available software documentation ([1] and [2]) provides timing

models for much of the terminal defense data processing. These models

were obtained by linear regression applied to individual processing

TASKs. Results are expressed in usec as executed on a CDC7700. For

purposes here, the resulting equations are more detailed than necessary.

We obtained simplified forms by eliminating relatively insignificant

contributions and otherwise focusing on principal effects. Generally,

this left us with a model involving a dependence upon a few

scenario-dependent parameters.

In the individual PRIMITIVE descriptions, these simplified timing

models are given. When scenario-dependent parameters are involved,

ranges and nominal values are provided to arrive at specific CDC7700 MLI

processing loads.

As available timing models pertain to entire TASKs, whereas several

PRIMITIVES were generally identified for each TASK, it was necessary to

estimate the separate processing loads for individual PRIMITIVES by

partitioning the TASK total.

The Radar Returns Assimilation and Radar Scheduling timing models

were supplied to us by McDonnel-Douglas [5], as the available linear

regression model [1) was not useful to us. In the case of the

scheduling function, we divided the processing load associated with
Macroscheduling and Microscheduling evenly (based upon existing results

which indicate a nearly equal throughput requirement for these function

(33).

$DVERAC
*m *. .r-r-- -- ,..

/'

A-2 Data Access and Transfer

Two mechanisms are used in the PRIMITIVES to represent data access

and transfer as illustrated in figure A-I. The "direct" mechanism is

associated with input and output queues. The associated data transfers

are then on the communication links between PRIMITIVES. The "indirect"

mechanism is illustrated in figure A-i by

K write

group files)

(file DPA) /

Here, the channel for movement of data is not explicitly modeled.

Rather the processing delays and contention for resource are modeled by

reference to an external resource or levice.

Generally, we associate to the output queues all data which are

needed immediately by a subsequent PRIMITIVE. Corresponding inputs have

associated the same data. Other data accesses and transfers, for

example, to and from an object track file, are represented by the

"indirect" mechanism.

Note that the "direct" transfers are not necessarily implemented in

a particular architecture by a direct communication link. In the

existing CDC7700 architecture, for example, essentially all data

transfer are through the LCM (large core memory).

A-3 Process Evolution Principles

As presently constructed, PRIMITIVES involve a number of

scenario-dependent parameters related to the evolution of the status of

ohiects (and interceptors) as they are detected, tracked, classified and

i. ept . These parameters appear in the final splitting to obtain

outputs in each PRIMITIVE.

A-4

I

41

V)C

ND

~ 4j
SC4 .) -

.L I+- c C4

0

w CL -

cu

OiLn

Ca. CN) - 0

OLD 1 .

4) C ~ 4 Aa

mtL4.-4 o:.

~i c I 0 m. o
1 4.) a. .r LL.

8x a) inC

NCE

a)
0

a)

u. 0 4

a) S-
EI C- 06

00 1.. Ci
S- Zo 5-

0-VRA 5.

5-A-5

As PAES does not maintain the identity of individual tracks, a

flow-oriented representation of the process evolution is necessary. We

nave adopted a finite-state flow model. The process states are

indicated in Table 1. Objects begin in the state "SV", i.e., have

associated searcn/verify returns, and evolve through states TI * OTI

OT2 * OT3 * OT4 * OT5 * complete, as illustrated in figure A-2. Some

objects are dropped at an intermediate stage. Further, entering OT3 is

associated witn the generation of active discrimination pulses (AOD),

entering OT4 is associated with intercept planning and 0T5, with

interception (MG).

These Process states have been identified to correspond to the

principal functional decomposition of the process. In so doing,

approximations have been introduced. For example, in the interval

following object flight through the commit contour but prior to

interceptor launch, some objects have been classified as RVs, but others

have not. As the RV class is substantially larger than the set of

threatening but unclassified objects, we have chosen to ignore the

latter, effectively assuming that active discrimination (successfully)

classifies all objects before they reach the commit contour. Additional

refinement is, of course, always possible.

In figure A-2, the mean dwell times for each state are indicated,

e.g., .25 sec for state "TI". The sum of the mean times from initial

detection to completion of the intercept is seen to be 10 seconds.

j

Implementation of the process state model involves fractionally

splitting the flow at certain points in the process, typically, at the

output of a track filter primitive, or at the output of a discrimination

primitive. The parameters of the splitting are scenario-dependent and

are chosen according to two principles:

(1) to achieve the indicated mean dwell times in each process

state, and

A-6

(2) to achieve desired fractions of target and object types.

In the next section, we obtain general model relations to be used

in computing scenario-dependent splitting parameters.

Table A-I Process Evolution States

SV search verify processing

TI angle group tracking (track initiation)

OT1 object tracking before any object discrimination

OT2 object tracking with passive object discrimination

OT3 object tracking with active object discrimination

OT4 object tracking during intercept planning

OT5 object tracking during intercept

POD passive object discrimination for unclassified objects

(objects in state OT2)

AD active object discrimination for unclassified objects

(objects in state OT3)

MG missile guidance

(VIR AC

/ J N

Sv

IT

TRACKING 3 DSCIENTON ITRCPO
PRCSSSPRCSESPOCSE

groeup. rcssEolto

OTI OBACO

.70 SE

Model Relations

The typical element of process evolution represented within a

PRIMITIVE is represented graphically as follows:

jevolution to new state

processing 8

remain in

this state

The first split in the processing evolution generally corresponds

dropping further processing (e.g., dropping redundant track). The

second splitting in the process evolution generally corresponds to

partial evolution to one or more new states. A fraction B of the

instances continue in the same state, while various fractions, Ti.

""' Yn' evolve to new states. The mean dwell time, or number of work-

unit cycles through this PRIMITIVE for each work unit introduced, for this

exponential model is given by

T 11 0 ()] n(1- 0 -1)n

na
n=1

a I
1 - (1-G)e (A-i)

CVIRAC
A-9Inc emA

#*

k._ .A _

It is assumed that each instance either remains in this state or

evolves to a distinct new state, so that

n

Yi =1- (A-2)

Note that evolution to a new state may generate multiple events so that

one might have, for example

Itk

wnicn is more directly represented as a replication:

The assumed scenario provides "ultimate" fractions for each object

type. To obtain "single cycle" fractions, one must account for the fact

than an instance passes through the process repeatedly.

The ultimate fraction, u0 , corresponding to the single pass

fraction, , is given by

A-IO -
*

" i)B 2 - o______
CL = + 0 (l O + 82 0 - a) + a' (A3

- (1 -) (A-3)

first second third
pass pass pass

To solve (A-i), (A-3) it is convenient to let

0' = *(i-a).

Then (A-i), (A-3), respectively, become

r = 1

U=

I-B'

These are easily solved to yield

a f o (i- B') -

S= B'/(1 -

If ply . N represent the ultimate fractions of states

evolving from the present state, so that

N

1o + i= 1, (A-4)
i=1

MVIRAC
A-li

L1

it follows from (A-2) and (A-4) that

Yi= k i = 1, ... , N.

where

K (1 - B()- o = 1 -

Certain events are initiated once when a new state is entered. The

fraction associated with these events is also K , since the ultimate

fraction, a ratio to initiations of this state, is unity.

A-5 Process Evolution Model

In the following, we have extracted those (sets of) PRIMITIVES with

scenario-dependent splitting parameters. Each parameter is identified,

and numerical values computed for them.. These computations are based

upon the model relations presented in the previous section and the

scenario defined in Table A-2. The process assumptions are further

defined in Table A-3.

A-12

... h

Table A-2. Assumed Scenario

OT1 0T2 OT3
No. a gor y No. ot Qor y MD. 11 a or Y

redundants 8 .0571 .004

ghosts 10 .0714 .005

fragments 20 20 .164 .016

decoys 70 8714 .062 70 1.836 70 .686 .035
I !.836 .085

RVs 32 32) 32 .314 .016

Total Objects 140 122 102

Table A-3. Mean Times In Each State

State SV TI OTI OT2 OT3 OT4 OT5 AD MG

mean time (ms) 100 300 700 500 1000 3000 6000 1000 6000

associated 100 50 50 50 50 50 25 250 20
cycle time

T cycles 6 14 10 20 60 240 4 300

& .833 .929 .900 .950 .983 .996 .750 .997

1 .833 .933 .915 .983 .983 .996 .750 .997

K .167 .071 .085 .050 .017 .004 .250 .003

VIRAC

A-IJ

', /

4.)

S-
L S

041~

4-a

00
L-

1-2

A-144

006

41

Li4J

CA 0 0

CD 00 LO C

S- S-

.0 0t
L) V)

cm CDL I.- 0~

CL 5-I --4 .

B-4
0 1

4-- 4--

L4) 1.'4-
9= cn ui 0

ca

&). 4IC- J.

4J 44)

1.

0 14 41 4-b)

41 .)

M 4.- 4.

4) u C-4
0A 0J #A 4J 4 C - IA

to Cl w
L)) co (D J

Ui- 5- 000 U

om 4--o~ 4-- 4- do 4.

0 V
0 041 0 A4-

CDC 4I-- 4I' '4-J CL. A .
00 to 4- 4- -)b

C.)C

Co CD0 %0L ED o

u to 0 00DP
-J 00 0CD

4-2-

0.00
.0

a~ 0

-0 of

3V)

0) 0

r- t- 4.).1
0 U 04-)
C 4-J fa Ec

.C 0r) S-

W 0 u M

C

o ta

IA-1

(1) 0)C

- 0 4) -

>.0
Ln' 4J)r

.
U)

L.~ (fl S-0 4

CV 40) '

0)

ol CI 4 4-

C>J 0 41)4)r
0 <-- 0 -

0 C~ 0(0 4

4- M

C3C

0

LL. C)

F 44J

CA CI

-C
0

ma S

+J 4J
Eau

4-1 t Ls

4)0 CI On

- 0 w 4J

S-C

F LL-
010
4JCL

(DVIRIC ~2

4)

to01

r- I.-

IA IA 0

m L.-

oU U4

-1- 4.

m4. V 4--

C S

'~ (D

0 0

4J 4-

C)~) 0-c

LL.U

C~a IM CD.-

.C CD

41)

*0 0t-

ziw W

I 0c

cu
(u0

GfG

4

to 0~
%- S-

U 0.

A-18

LO

C

4-'

L 0 .

a 0 41

fo 4'- u

I) to

-J1 0)0

LIj -. ~4- 4J Q- CC> u. a) c L.

S 4) 4- 4

gn A ' d 4-;() U

U OL u t i g.- O1 uC7) 4-4-

0 - - -

0 C

-cr- 4- lid b
o c U 4-CCo u 4J0to.

4.) C U

0 t

u)- o 41 .J
toA S- ccu L

I--
0C

.;. :--c
C) C

I. 0 L

C>-a

0 c

qtr

Cl/

4--

LC) 41 0
0 4.)CL

4-~

CD 0 0

LL 0 C

-)

S- 4- S-C
4- ::w

) CD,

A-20

o 4-
0
.. 0

oI--
U0

4-))

> r

00 r.) 4.

C3 4-1 m o -

4-)

V
a) 0) CI

4-- 4-3

U fl

CL4-
4-4.) 4A)

U UG)

4- 4-* 4-

o LI.. 0 0 0

0z 0 C~ 0 0) - 0

Z4.) 0)

u C) uJ)

4- 11 4- r 1 4-

0co

~O~i@MkdA-71

0 4CZ0-e

-
0. u - -

cu 4-) w

03 4-J

Li) 4-1 Im 4

o1 cm 0o 0

(1) &- 4- -
t-on 0) 0.3"

0 04-

.0 c 4A -

00 00 fa C0

4- 4- v 0-4
00t 0 4-0

C 03 c S-

+L 4JC

4-0'
U.S

0C
o= Cl ..

A-22

4J

4)4J

o Co

4.- U).

CV) 0.
CA C

Lo L

CD IC)

Radar Scheduling Model

Radar scheduling is grossly decomposed into MACROSCHEDULER and a
MICROSCHEDULER. While tne several radar pulse types are handled in a

single data structure (in the present implementation), it is necessary

to explicitly distinguisn each type in the functional model.

initial S/V

pulse request S/V S/V pulse order
D M M

A I

first TI C C
pulse request R TI R TI pulse order

S S
C C

subsequent TI H H
pulse requests E E

_ _ _ _ _ D D
U U
L L

•E E

MG pulse MG MG pulse order
requests places pulses places candidate

into group as pulses on the
candidates for radar time line J
a frame

The macroscheduler prepares each pulse type by processing specific to
-J

each type, then creates groups of candidate pulses suitable for detailed

(micro-) scheduling within a frame. Generally, pulse requests include a

requested transmission time sometime after the time of receipt at the

macroscheduler. Tnus, the macroscheduler model must incorporate a

representation of these time differences. Further, the macroscheduler

resolves the radar rate constraint, a further effect to be modeled.

The macroscheduling of each-pulse type is modeled by three

PRIMITIVE functions:

A-24

RD CX X

radar pulse models models

parameter deferral to radar rate

computations nominal constraint

transmission

time and framing

delay

Only the first PRIMITIVE involves a processing load. Tne latter two

PRIMITIVES are used to model delays, as indicated above.

Deferral to Nominal Transmission Time

Pulses are given a nominal transmission time by the TASK which

determines that a new pulse is required. This time is such as to

achieve a fixed, interpulse interval in order to achieve sufficient

tracking accuracy. In this flow-oriented model, pulses do not have an

individual identity so that an effective delay to represent the deferral

to the nominal transmission time must be introduced. Initially, a delay

specific to each process state will be provided for. Appropriate values

for the delays will be arrived at by trial-and-error through use of PAES

program.

(In checking out the process description, where no architecture

effects are present, the entire delay - except for the at integration

steps through non-zero delay primitives - can be located in this model

for deferral to nominal transmission time. The selected values would

then be taken to be the desired port-to-port response times less the

fixed delays incurred in other primitives on the relevant thread.)

Framing Delay

The use of a radar scheduling frame was introauced in the existing

terminal defense data processing to achieve efficiency in (micro-)

)VIRAC

.....-----'. -"--

scneduling and to meet TASK scheduling requirements in the CDC 7700

implementation. New scheduling concepts are probably appropriate for a

distributed data processing implementation.

The use of a frame introduces a delay, as suggested in the

illustration below:

radar

frame
scheulig macro j micro

schedule schedule

pulse request

arrival time

The total time from pulse request arrival to tne beginning of tne frame

into which the pulse is scheduled is given by

+ Tmacro + micro

as indicated in the illustration. The processing times Tmacro

and Tmicro are explicitly modeled in distinct PRIMITIVES. The

delay 81 is represented in the operating system. Delay 62 is

incurred due to the discretization of the radar time line into frames.

On average, this delay is f/2. Pulse requests are distributed over the

frame, of length f, so that, on the average (and not providing priority

to any particular pulse types) a further delay of f12 is incurred. Thus

the total'framing delay is, on average, f.

Combined Model for Deferral to Nominal Transmission Time and

Framing Delay

The total delay associated with the deferral to nominal

transmission time and the framing delay is taken to be, simply,

6NT
f f

A-26

. . _&

with 6 NT to be adjusted, by examination of simulation results, to achieve

the effective desired interpulse times when this is possible (i.e.,

6NT > 0). A heavy scenario can lead to the choice 6NT O and yet not

achieve desired port-to-port response times. In these cases, the

presence of the framing delay represents a realistic contribution to the

actual port-to-port response time.

Radar Rate Constraint Model

The macroscheduler accounts for the radar rate constraint (R pps).

This is modeled by a coupling between the primitives RDCXX for the

various pulse types.

In a time increment at, Rat pulses can be handled. If

i input queue lengths for each pulse type < Rat

the constraint is not active and each primitive is a zero-delay

primitive. Otherwise, the total rate must be limited. While a priority

scheme might be used, we take here a proportional model. That is, we

take

Rat
input queue lengtns for each pulse type

and take as rates for the respective pulse types:

a x queue length(pulse type)/At

i am.o~d A 17

-.- - .. -,- I

raa returns rada comand

Radar Returns Microscheduler

Assimilation
candidate pulse

Search Raster search rasters pool

Generation Macroscheduler

S/V
returns

S/V Returns first TI pulse

Processing request

TI
new TI

returns

_ TI Tracking TI pulse request> g

new OT

returns

- IOT Tracking OT pulse request

00 request

AD Ireturns Object AD pulse request -

S Discrimination

SIntercept request

Itercept Planning I f i r s t tMG pulse request,

returns Intercept plan

"- J Intercept Control MG .lre u s

PROCESS OVERV IEW.'

A-28

LLI

cli (n

I.-

A-29

5 C3

< (* CD (ici CDC

0

41 M)

o 006

= C

4J4

S- S- 4- 4-)o 1.o

in4 (U +j J

4J4
*.414

I.).
0- C

A430

., 0

S-
4.) -0

SJL-
- 0 4- 0

a,> 54-)
>9Lh

... 04 00

1-

I-- 4-)

S.o.

L VL

0 $-

S-S4J
4.) 4.

-

00

S. .0

CL .- 4-=

A-31-

4)J L

4-6

go>

00

to

4-3 -0
in t-

w S. 4144

>0
to-

I--

S- C-

0 0 to

CAC

0k 3

WI-

U 4J
G)

*-
o 4-
.r. x

I--

x x

S..

VE

.
4-)

1-4-
S-

C))

In 0

I-- C)" C)
go 01- E

4JI 44.)
I- 0 Ci

Mi~C

4. Im 4.-0

0..

>- 01-

4-) a) 4-. C)

S. .0 L. V

0 >)

1- A- 33

u 41)
0)1

4-)

0a -
~.>0

0

LL

L.L

CD O

04

C3C cm)

S- to

E)
o e-S.. 4 a) "

4- t) 4- 0 S

S-. $- .0 S-e.

S to

S- C3 t

A- 34

4-)

4-) 1-

Lu to4-

C

4-)

cr1-
CD

C.0

(v

LuE

4-)
$- C)

L. 4

*0

.1--

4.) @4.1

.,a) C) N

Lua

5.. C.1.

E 4-)4.) 0.

a.A-35

04

0i

I--
I-1

-O

o -

- 3

4-3 4.) - ,-
ai a 0Jn -

cJ: c

-o IA. V0. o

4)~S M. a

4- 4-

> C)
G) - -I 4.)

-0 0) Co 0m

Q)C CL)4.

4-)04.)4. .)

0) I- Q)CAO4~

4)04.) U)

to t- S- >w

CO M0 00. MC

to-o

4.)

0) :

0 0)0

41 S.-

4) 413

4A 44) >
0

W) 0 4-'
U)V 4) u .

0 0 5. CeO 0 4
>. :w 1-C InC

4.) m 4 V.=.-

0) Li -0 1-%

v0 0),

> 4J tn o h
4J~~4 4- o At

o- c 1-4~4)

5- *e4j GC>
0- . m 1n 0)

0 I 4- .-

a, C 0 A-37

24J

4)00

(no

:In

n

In 0
0 0 C-

-

4-

CA38

4A

CC

0n 4-1.

CC

4.L.

u w

>.. S- "0
Q to-

4.) Li.
0) 4-

-~ 4-)

-~ I-

4- S--
o =

0 In

~4 *e- 0
.. 1. .AJ i

> >,

4-) J

A- 38

InCA

4-) 4-4-I

L) 1. 4-) S. - -

Oct - 4) S- I
cm4. >~.) 1 4-)

xc >) X. 0 4i C)
0- U- . u

o 0 0.0 0
.0U

14- L.AI
0 0 cE

m~ 4- S.
= 4.

.CU 4- W)

>., U . -4,1

0)U 0I4-)

C) C)

a) .. (1) C

S-- -i l-

000 0
u C CI .- 4-) 4-) 4.) 4.'v vr

0000
T~ TJ TTT

S.-

0J 4-

ex .. 4

x Co Uo

4. C

0 0

.A-3

4-) 0. C) L. 0

>% = C:OU.0 (A4J

0M 0
4.) 41)

0 4oJ 03 S-.

00

s9-

C)

4-) S.

0 41

C

(At 4-) (At

(%j 4 4 4-)

*9- 0A
0 i

4-)

£4- .-

cu a

oa S-- (
o) 4J (a

> 4) V,

. :39- Cc4-V

A-40

Co u

LA 4-) C).MCD 4.)

4-)

to) U) I

E C CD

LI 0
CO

4-5

L

040

41.J

4-C
I. r

4J4

E

.A94

LI

A-42

I3

4 J,

'o 01410 C 0

0- U.4-) C

4)) 0C to -

to~ ~~ 41CO1 sS
#A 4i4U

-C 41 0 0 r_
a) inAn41 in

4A 'a. 00 3
Cn 0CAV'41CL 4Jr

0006

CDo

cd~ca

00

4-4J

II
inL

CC

c Y) 0 S 4

411-

V 4.)

41 c 0

A-43n

0 IA
4.)

to 0

EL EU
L L

Cfl (A 4J L
CL) EU U)o- to -

00

>. .-
4-) lu 41

To r_00 4-) 0
(A ~ ~ ~ U o) 03 r

S- ~ ~ 0 o)LLQ

Er MU. =03E j"a
M. >) 03 cm .

x 0) S- 3_ 0 4

S- C . U j >, C

~4- t (S
o) 030 44 U 0) 04-
L0 c~ - 0 S- 0
tuU)/ 0 4) to j

o 4-4J~ 4- E 44' >-

4- 0c03Ec 4~
4A U. 00 0)3 U

U 0 4Jw (V > r'A)
(A 4 S. - U +4. 0U4

0 go- (A 030U0 JCo)OS- ~ W) 0.4 XMU 0M

0- . V-EU CM4L

0~ L-w

41 "0) *-E U~

L 'C EU.EE
0 ~L~r0~

4C) C d CU
4J3 . w 03 *

LL 4A 04.0 > 0

411

S- S- E-C
Ia. 0

LA-4

4-) C

o LJ =
::I- a)

a) 4-) a)

a) E-
S-1

O- '4-0

4.)) :P =) I
4.) 4P'

c-t3l 4~.

1- y-$A.-
4-)-. so 4.)

r_4.) S-a) 0
o0(A 06 4-b 4-4)

=3 0 c

41 a CL) a)E -

C> .C 0 ..c

tW) >
U)I (A 4.)a W

0u > S-

a))
c0.
0) 0.

C CL

0U 4)4. CO4E

(D CA 00 a)

C = a) Sr--
in a) o. EU .w 4

-a-~-1 %.-. 4)EUJ .

4.n a)t

- 06 4.) I* ~ 0
in N

A-45

CC

-

-) I--
I- CD0

0D C) L)

F- a-

LA- L.

CC,

C-,L

Cl-4

-4-

C).

C0

A- 46

Ln

.- a)

.C -

cn in

to En

0) 4

to

to 0

4-)4-)3.

4A ~ ~ 0 4

44 ~ ~ CCr

to tn S- U
SS.

V) Lot

0 c0

44.

0% V)4

d) C7)
0-4 -4).

cc: 0 0 0S

,a 0 2M 4 0 w

*0 0 a

I- CL (U

S - zw a)) -

4.) a S- tn-

SA--

S..
VD 0
C C4-

C>1

-

1. 0 c 0

S . - t -(0

0

-u QU) -- I

C.C7 Wi 0)1
a) ro- 5-S

0- 0 E

0.c WIE

4-9 CL

cm 41 C C 4-
CEU 4) -0

= 0 4) 0)~

0r C. C4

o Li, (oC4
L . "C4)+

4 -4 CLi

'-4

I-

0'

-F

FI-

0* 0*
W .-

4) 0J

(U 4)

F--
w . CA 4-n
CL 4- (U 0 U

0 C
c- =9 0 LCD

>) v- C CL inCO(
.I.L 4-= 4 &A" IA m

4. 0- i- a, F 0) c
0 . 0)S U IA

to C- 4C 00S0

4) d n 0U - cn

L. (a ! (1. C

A-48

00 u0 0

r_ c .C) w.

0 4- 4 cc-
U 4h 4)>,

0) 0 Q t

S SI.)0-- 02E
S-C Lo 4) S.-

go I-- a 0) N)

I'- S 0 4-

0 t0
- CO InU 0

Ln~0 4- 4- 0

LL..

LL 0S- *
im- S- cu C0

In 'C V 2)4)0

4-)0

a)0 InO

-r to 1 E)a

- 4-- 0

0 u0 -4

=) c 4

L. 4.-04-i

CC

C- C

to. T O 0)0)c
a) InE >4

c- 0)I.

go C 0 toC
L4)-r s..) s. n

0) 0 C)
-. 0 -~0-0)4)

0)4 4-) m

I-1 aC M I

4J a) C 4--

3- 0)
4- '

In0

*0 ~ A-49

'in

C(A"

0 C-
43 0

di 41

-

-- eo-

-- L I- "

m

€.)Z)

to

I-

I---

E

4-) 4-)

0 LA-a)4 c. a)c

V- -(

vi . ~

= to

4-- U- 0 =

4- -iJ " * "

"S- 0

I0 S..

44- 0 0) 0

U , (A &A . +,a

,, 3- C 9-3 J

S- -5

I-~S 0 m-

0 .- 43

V. U - 0 toi

v >1 L. L.- 40
%- to t ta4- 4

0 1.

0A 0

1

L. - 4,- 4Cc
.) V 0

4-

0 CO

LL
1

4-I 4-)
4- %D4-

0

Im Ln

4A 0rj r

C).

S--

ce-t

-. 4)

) QA

r- n -

a) C)

in- 4)

M. 0) 0

= -"
UJ a) - l

0 060

4J 0))

04)r C L. 06)

I- 4-4-

01A 51

S..

* 4- 00

S-. --

.) 0 - @3 I

44)

C-.. 4- =)a ,

0

74.)
(U,

I-4-)

0 .n

LO
4.)-

1- .0 (U

Kr x x 0t1' .9-0))

4o 0

0. 4-

C)U 4o.)
u- S

- CL t

9. a.1- -

0- 0 03
a) =

4.) c 0-

ii.L In 0 .

4- 4- L
ofI >

o U) A-52

A~.

C ,-"

.) 4.) 4A
4J C 0)

0 *€ Xx 0 0
L. L4- L.

0 iu0 W
C- 0 r_ -

U Q)

ECD
o

41)

-o0

w L X 4-

.o" - O)I--

o OJL0 =,w

1-- 4- to

C, (U =

A-5

U)WC

Wa

a) Ua
L~~1 4...

C) 0)U) do
0) CE L. A 4)

S- s- 4.) 4- -.- N
o-

4- 0) Cn 4-

a)0

'4- 394-

0)O U)

3- U)
-~~ E 0

c~ 0
4J

0.0%n I +- c C
C3 cm 00 w%

oc 00 0>t-

4J4 0 .CE

>1 u PA a) CA w O
Ur) 44 C4A S- V

4 C S - 04w1UC
0 4- V) S. fl 4)

4) 03, C 3'

CL 0:.43

A-53

C 4-)

x w

o) LO .

4--

o

00

a) (I

1- L

E

Wi 4-)

S-

S-. 4.)
40 CA

S-

41)
W

W 0 W

44)W
UW 10 d) t

S- x EXn-L
4-) 1-- 10 04

Cl C. C9) WL.9

43 0 41 0

IAU
C)0

__ 41) 0r 4)

x to 4- $A U
S.-~Ef r- o43lt

0 4 d- mn c UJ
0- S. 9 -0 n

C 9- d) CL .

cr. 0 x-J-

do. 5- 4- 0 4--
1 4.) r: 4) L6V S-
>I- w aLoI-C

E 0 0

to m to0 4- '0r-G CD4J

A-54'

S-0 cm

ax 0 C E

L&. 4- to 0 -
,- - .0

CA
4.)

CA

4-0)

A 0

C..C0

o -0

In

044J

4-))

o Lot

CL C

(A CC 44

ou 0
u . =

4A~I IA 1
5- 9- $-

M S. 0 L

A-550

4.)

C .4J

4.) cr

L.

fa a

~. 0-

00

4.)

LA. . r En

U S- C)
oC

0)

x -

I 0>m

(A -, 0

a'C CD-

--

al

4) 0J

4-o

G- r- -

010

C 0- o La

G2 C.*"

E 1 0

4- 0 C

E. 4 - 1-c cH
a- -L 0I a-4-

A--

) U)
C4-)

U))

u 00
LA

0

ItI
40 C

I-~

too

> 0

4-)

4L 4-)
0 0 4A

L UJ

4) tGm 4-0)

- a)

0 4J 4

0
4-) 0)C

to) 4- W

ed 0 to

0) s- a). L0-
4C "aL J

41 - ta %0 c J cm
0 0 ci 0)0

to 4- in E

a C U)) g
0~ 4-4

C UA-57

0 m

fA '

E Cm-
C IA

%ol- or'

U- 'a-n

in

.0 +

%nn

S- CL

L.3 c

4-a
0-c

a)AI
4A 4

I I

4-)-

S-~ 4-Cit JC

Ie A C3 4.0 C

L- IAMS

CL :3
ai 0
wS L.

MA 41~
f I

0

CC

-A-5

4.)

0U
41

4J (

S-0

4J

otn

-~ I-

L) 0-,-

f -0

4- S-5

4J a)

d) 0 -- I

44-

00)0

a) toto
S- S- f

U)4 41C

ca CA 06

/) ,

CD -

og

4-
4J4

0 1.1

0) a)

fu 0

01) 12C m

>)'

41-'4-

91. 0CC4

C CD A-59

C W

4) c

us

L.i U

o"-4

00

u

t-
"0 L

S-0

s-U

ed ,_

-5 du/

S-
S- 4-)

tAoS- u
(D

4-)

0

4J QC IA 0 4J
(A s-ua=

s-J S-0 = L)-

CD 4- 0) E4

CD 4)
0 4)

r- 0 G
0 *- CC

c C . C C 4-).
'1IA

0) toU U

s- IA>,s
tu 4- 4AU o~

L 1 im m cmlC(7

03 c S-4 ~L01
u-- to cm

,a 01E

41 s--o

(d S- EU EU 4

A-60

4

LA
I-t

C)~

L-

LJ

-6

o

S- S.-

a S..
(a0

i0.'

4-)

tA .CL 0

0.
S- c'J

L) C) 4
tm

(~(D

0) (

4A 0 C

>. U

0
Cdm

CU *0 c a

> S- .-

4-) Ins.. - Wj

o . to 4-) S

S..~4 *- UU LL

A-62

C)
to

I- L

- 4-)

0

o - 0o LW

a) 0

4#. - *

L) c

4A-L

L .

4-)

A-6

4-1
0)
V-

M

0

F1-

S- -o

I--

C).

CD

'U U) L
(A, V

LO 4

Ini
CD

X% 4- +
0

0m C

>9 4- 41
to r-0

> ~ C3 to

o 41)S

'0 to c01-

C- cl

A-64

5- S-

I-00

4--

105

S- 00

00

cn)
cm C

0 tJ

t. o a)(L

S- S- w 4

*0 4J S

A-65

4J

S. W--t 03
S--

Iu IA

S-5
t

I-4

S- CL

u1

i~ .i

EUO

oJ

"In

VA 03

.X: CL

U qn ' -o

4n, 4- a

-) 4.J 4J

W o =

L- %- c-

S- - 0 ,-

4- u

A-664- 3 0

In CD

03e- U E . ~

.A--

4.)k

CD

V)
Lu

A-6-

0.
o o

C- r

I-
CD _ 0
= E L.

CA S. .-I

u w

s- V)

0 06

I-

0.! . U -

o •r

oi " 1n -

(04 0n

4) 4 c 4

4- t
. j cu4

CEU

C 4-).h-

0£ g ,'-,UU

0 C 41

CL C

C- S- 1

o. CLa

C3 .19-

1.-S-
o. U 4J 01 -

0)J C 4.

4o 4) 4-1

+a 4.1

4-U - U (

A-68

4.4

I"- *-

- 4-)

- I'- I

0.

0 0S
CD m.

-

I-

n

CA

i

tnU--

0a)

a). L4L

u0 °r-

CD 0 . '
$_ Mtn

mm

0.S

.I- M0

I:In

a) CL .. ,-

*1L - (L)

4) 4-"

-~ 0

a -I

A-69

ic

44J

-0 0

t_ 41
S- a)

tu

4J4.

- 0 4.1

4J 4) 0
W ~ 0 a) 5 5C

C C

o .9 . !

00

4JJ

to 4J~oR

I- c-i 3

.- "-

A-0

- 4. --. 3

Q4.

fl

u 0*

-4 -

0

4-)

()
5-
(La)

I- a

0'l

WM

to M 0

~0 0

4-

E 0

44-

to

CL

L. 4J
4-)4

0
4)

I-

G) c

0j 0 4-)
1.. 1-

- 0.

SA.-

0'
L&U

cr-S

LII-

LA)

n ~ 0 0

co c G

LUI

A- 72

a C.

-=0-0 - U 0 -CUW

0 00 s00 0
S-4 S- 4-- 4

4)

C:)C

CjC:

C

00.

4.1

(U 4-

44.)

4.1

40.,

5- S. c 0 = --

M0 .- 0 VI ~0 L 0 5

Cc
00

.44-o -- 4 - %

4441

CvC

0t Inf- % a

0. - c0- 4 .C
Qn 0 1coS 0

aa_

4-- to ci

.- (A CA

0ta
S.- 4-)C

(A7

>I

443

M44J

(1) a- 4-

0) 0

0 4

1 14

0

M 4-

I- LI

'~4- -Mt
*0 CA

CL

0) 0 cA
> SJ S..

= 4A

0. LA .

@3L

1.4- 1

-U- 0A-74

4-)

0
- -

CL- 0-

0~-'

V 4CU 4-)

-~ ~~~ 4A - ' ~ 0 -

CA ro

to '0 -) 4-

to cr. C)- cr

- ro- 0

I'U S- 3-- tD $ -

0)3

0.' 0.0

09 r- m - -4 L

w. o4. J
4J- m- 0)-

- u o0%

C U- 0) 4A
4-0

0~ UL 0 E

AIA7

4 >-0

0

(0
4-2 C4-0

00 0 00 0"
L0 Q.

S. 00 '0

1)1O0
LC

Z) C3 0 . 00

Cn 0 0 I~@

In 4-')

0
4-

S- o

0

c- ,00
4..- 1-. N

- - N.

C) Qj 4 -)C

•
0 -- .--

0.- .01

0 -

(A r4- Q- S - c -4J,

1- c 0 3 -0Wr
to -0) 4-') 4)4J4

m 1 04- tz 4-~ -0.

S-O CI C- a)

03 41-. #A 4--. a)410

0 03 0 4-3 s-

r_/ 0l CD. a) to 0

C CD 01 n ON co 2 4- 0
S-LL f r_ 0 0Da mC

. . 4-" .. . ll - -

a U 4- C\ 00 4-) L J
4- %D C0 0L (0 en C4

0 C a.CC S a ~ o &- m +
* ~~A z -- '4-1- 4-3

V 4- -
-- 0'

C 0 -

4- .

0 I

LJ CY 0) LU 0

un LI
0

.
0

I.-

20

A- 76

-'

C C >1
fl S.4-

0~

1-

w 0)
zJ ci

Li- 0)

C)O

o 0

to cc

S- to S _ -

4-4-

0~ 0

C)C

go (D 00

41 4-3-Lon

0.. to C
E (C .0J

.1. C).)

CD --

A-7

4
>1

(n
C

0 0
41)

4J-I

00

- (A

I-)

tA U GJe= 4

a = 0)(U -

o 41a 3): >

(- a CD 0 u

*00

CA u3
U, ,

S-
o o 4.a)

0) CO4- 4

-x.
4--

o fa

C)

4-) m0

C

03 - 0)
0

u 4-

'0 4.)
*04- to
:30 -C 4JI

S- C)CLC0-
0 .

4-

c
F- 0

- 4.2

0)

S- I

*- L) Ln 0
4-' 0 E!

.- ~r LAJ
.- ~50 -

4- --

4--0

A-78

0)

4 (L)

00

)

00
S- -

o 4-)

0'
C

-0 0'
X 4-

4-) 4-3

-- 4t

ea L-

N 0

u- S- > t

4-)4) 4-

CC

ye >
4- UL-C '

L. %C 41 .
W) IC I'C4-

C) LJa

Ix- oe CC)
4J-

C, a
:3 C-0

S-)j

al-r 4)

Cl 4) No
ta. LAJ a .-

E 'n 4)
0.0.-
s- O c

4- 5--

A- 79

-iJ
CL.

cr--
U, 0

caJ

II-

0.I

LL- 0L

I-I

C)

L.

- A-80

4-)M

Wn 4)~

tA0

I--

u0u

S- CU)(4--

o 41 0

C-) to (U

4-

S.- 0 4-.0

4--1

o ~ V4-4-)

I-IA

a) S

4- 0 CD 0 C
L. C t

M 4--,) m

(0i 0 0
4 -' 4- 0) .

u. u ~ 4-' 0J
u S-) Q) + -to

c). s- ",*- co -

0.00 cl .'- 0 u

0 (-)00 4- 2!:

4-4)4) C% 1

4- r_) 0'4
CAL6

C) 4--I) -

0) Co.~

0- 00r

5n :2 . 4a)
E -d =n 0I

10 0

1- 4

4. 1A 81

4(A 4J0

oo 4

S- 41 C

0%0

-

0

-V

I4.-

0-

41

-E 44-0

43.

0-

IA

C -) .2 (

060

o- r 4) C

.0 ~ 0

1- 4 --0) 0

C --
0 cn

4) V 4-

*1~~ A-82

. .

4).

-4

1-

-

- a,
1-4-4

-0

0 I
.44.

I--

0CC s- a; .s
4-4'

t 0 ~

C S-

C~ 1-- C

C1 -40)
So I- 0

CL

4-

>C

o L. 0)0

= 4-

0.0 a)-

mA--

4-.i

C) C S_

0J' 1.3 0

4-- 00 & 0 0

CDC

4- (Z z

I--I--4 4.)u

4-0 0

n 0n 0 0

CD

4A (U S0 C U

o2. Li.- to S

4-04- > L 0
4) .1c () 4 ..-

4-)U Cu 4
t~. 0u (a -19 '

~~-4~ C)J 4J 4J)UJ U

00

4.) 0
U (

tn UnDU
I- C Q S

La-L

4J I-D

41) L. 4.3

(. 4.' 0D

42 A-84

44-

C~) 0 C
I-. CD) S-

0

> 04)

ro S

- 4- X t
E C

tu~ 0 .m o

Os- 4
'4--

o))
CDC

4-300 o

0) C '

cmm

CC

S. S-.

41 S-44 U 0)0

f 4) 4 I
a))

ia. 06 C)'4-

CA-

fA 4.)

CA0

5- 4J (A
GJ4J

0)4a)
0a CA 4~JE

m 2 0) cm I

F- >... 4.)

C 3 0 ,*-0

U 0 -4

5--

CC c
40. 0 E a

44- L. CMJ C-

a,4 4- 0 C
.0) 0 jo) coM .

5- 4-
00 w C

-~ 0

a). (A S- A.

CD U) U 4 (

4* 0) - .- .

a)'4 0-> 1

.0 cm C)

S- a

CD

_j 4-) L
I. -

I--

C)

-o C)

4-) CAc 0_

-) 4-

0)

cCl

4-1

CD S- W0
o-V 4-
.4.)) CI

UI IAU o-

'4-
C S

S- cn .9-In
C In S..

o 1- 0

U A-87

4-I

4. C~ CdUL
wo wi t - o 3toa,

Q. C4) CC- 4 1 CL 4.1 .L
CUU 4)Vi .- a)t.- .- 0"

4J (.fO. LCD. S- C S

0-1 0

fa 0 0 0

,aC S- 0 -

u I a) CM 4

4- CA
C1I4-~ 0

CD. £4-~ 0LI

0~C 4-O .

0 cl0
5~~~~- C 0-
0ca. 0

C>-

4J S..

@r W0) 43
- r-. ~ - cu

0 .04- 0 M0-.- #AS-
o 3: 04-

r" 1-u C

a) L. .- to
Of J - S..

C >

0 E 4J.
4n 0

5- 0C CU

&%j~ 0 0

o 4$
4.11

CC
4- 0

LL- S-
C 0. 04.3

La. 0))1-

U- w
00.4- -

.I- cmI

4J S. 4

L i

L)0

C) C)

00
c'Jc'a

o 0

E 4-3
4>0

%- - 0

v3 0 CD
r_ -- 4

-R

4o C1
CC

4- Vr

4) C S- 0 4

Ln 4J 0)S
@3 4- OC C'.

0. in @3*- 4
C'.) - U 4

> E

W3 1 4 in CJ'
4-1 1- 4' c- - I--

E C. S. I.- I-
@3 .4L-) ... J41

L.I LL. W 0G
0.CD. 41 S- 4S.

0 -4-'

14- - 4-@3S

A-89

to S. 4 0

0o 9

I-4

*0 U

LC0) m

.0.

0) 4A 0
a 0 u.

5- ~ . (-

a),a
.0 CL

0 U)

Li 0 0o~~ 4.. -

U))

4-U

Q~ 0)4-

"0 Q N

4A-g
41 I

AD-AIO8 589 VERAC INC SAN DIEGO CA F/S 15/3.1
AN ANALYSIS OF MMCS NETWORK ARCHITECTURES TO SUPPORT THE DATA P-ETC(U)
DEC 80 4 C TIERNAN DASGO -SO-0017

UNCLASSIFIED R-OO -S0 NL

'I I -I o n Ilh f
~mommmmmm

Emmhhmmmhhhhlm
fllfllflflfllllflflfll
HEELIIIII

lilt 2 5
1 . Jj -

-i MRROCOPY RIFSOtILIIION TI SI (AR I

1- -
C)
-j)

S.-

I-

4-

0-

u - CD

0

U 41
C) 0.

0W
0 'r-0

0)0

UL

C,0

41
0 Ou

C z *A-9

4J M In to

I.. C) L

45, C~C) o . .os

fA 9- 0 -

C CD

I- 4-~ 4.)

0 .
9

...) (v

4J-I

0 0 4

3CC

0. a u4J

4J

4.) Q 4J Q 4

4J4
CC

InIm

CV) CO (A enI
S.1 0.

0) - C

A-9 S.

Q) S

01

or 0

C) a S-

0) 0.

>00
go S-s-0-

d)01 c

OOO

CDC

4-) * 0
V)U I--

4D LL.-
30 0)...J 0

en4-Z

I---

0 L.

a. CDU

InA-93

-4

0

4- 4J
ol (LP

Q --

Co

4c..

~J
OS-

4j !4

>..

a.). I

L. cm

.w-4J

or_ 0)

CL

Q. 4-'

73. 0>

AS-9

4).

~a 0
M -A I

4-0. I--.In 0.
40

01-
CI

4p CD C) I- c

015- U)

1-c 41
0-()S

'4-0

~- 00

~~t-.

-)

Cl.

Ca

0 .04 0

00 u u

U~ Us-

'4- 0- 4J*

4J0

0)0

CC

I--

0 4
-9J(

4J 4

41 S. 4J

0. L.
. G

C +

4-)

I- W -

cr--

I-

40 3

v M~
> 4 CC

4J 0

u -j s 0
o-. M 0 '-

I L

0L C)

004

(n L.~

F - 4-) 4-)
0 Z (r

U) IA
a- 0, c 4- '

t - uy\

0.

C) 0. &
0-

4 J S. 4Jp
0 C) 00 00

U).
a- L0 0 4-04-

4'E -- 4-

A-96

LOl

S- v

Lfl

be~ L)

CoC

4-)-

0)4-

I-

=DS-

L -

4-1

CL(S-

S- 4-

s--
4-

-7

d) a) SO

C), >.,

toG
4) r_ 4

Ln w S-~ w F

%0.

C4-

cx 4A2

-OLO L..

ClC

00
r tL -0 0.)

S - S- i

0 0
tn CL
I-C

S- 0 4J.

4j 0

Nd)4-a

C U, m0

40 c Ci-

CC
Un

0.. r_ 4A
CD S- w

4J t4.2 -

0.-

0a I- 0
A-98S

41

U') cmc
oL)

W) 0 LO.
= - 0.0

0

Ir-

C)D

004

o 4 01

06 41

U S-

00
4-1

41 4D 0 1

Ln IA

00

I.- CD

WoL
CoC

41 =

CD~L 4- 6-~CD-

LA-99) LC

.

IL

Q

C3 cz
CD4

I--

A-100

4- LW 1-
~fl.4 0.

0 0m

4) I- C

CD 4- "0

u 4-

m ~ V 4-' -0

o0 0 5-

4- - 0 0
W- 1 4-t 1t -4

LA 04

4--)

4- 4
40r

to C "

o) S)

V) U) M(

4) to- C

4))
03 U 5. 4

m tn V) 4

4. t

4- 4-)~

o= 4-) V) 4)4

W) to (Af1lo (

CL CL (Al4

.9- 0

4- L) u~ di

Cl (A

LC.)

00 - Wq oe1 L-41S

4- 4-41i d

4.-

39C

00
4-0itl-

C

4-
u

CA: 4-'
0, (a C J 4
to~ 0 f

>. 0_ 4--'0
.9- u) tv

di C 0) In
0 CL to "a L - A (

5.- U0 .. je-C4-
cc 9i- 0)0

V~ >

4-4-- U .

4-)
0

IA

o0-"o U

I °0I-

> _oE
._j 4., , - -

IA 4

e. .--. L

= =) -
• - -4) 0 (C) t

m~ ~ S C-q, .

0

00

4-)-

L..

W4Z

goUO 4.

4JC

V)

CL-

CD 06 0
IAn

I--

0 0
.9. q @ '

C) "- 4-a)

0 u3 4-

- -4- - In

E 4A)03I

-j-
LLL)

CLa

-j-
4n-

LnU
LIP-

A- 104

44-

L ~ca (A .~~-c 41~ W/

dC

I4-

4-)

44)

(UU

4) Im c

E
$AC

in U

4) 4J +) 4-) 0)

41 010 r-4-

.I- CD w 4
to~u

r_ E 41 Ur V
a. -*-~ U fL U**

4- 0

A- 105

0

4."4.) 0r

4-)4

... 4... ,f-, n 40
O.1 0

0.w-

00

-j c .4-

CL

0..-. GJ_

060

s 14.

CL

* 00

.)

S.' 90 #

... . IN (

c41

W 4

41 %D

.4--

CD t

41 u~

CL 4-

4) 41 41 t -
.- d) 0)C

.I- %- S.z ,U
S 4) (U-L.U

.- 4.1 4) la
0.- c c 4 1

S. to-

A-106

14

0r

z= 4

to t

4-)

40.
LLI14- g

s- Co 4

o 4J

S-- C 4-

4- CD -0
0 043

1..J 4-)~
0 4- u

4J c
0) 4

4- 0- a
C-0 *- 0

a. 0.I

0L 06V

.9- 43 43 c

4 C u E) 4-)
S. -6 ud

A-107

4)C
0

44.

of

0.0

o do.

.3 CD

4o 06 C

4- - M 4--

-443

4-3 40 t

a.. NC C

4.30.

06 w

. L

00
44.

uo 4.30.

di "oO S-S

X-108

U,, u~ 0)~
E 41 CL 41

4A - 0- ~ a
w ~ t 0 _0

0 -0.

0) to-C _ Jr

Z r- M-

C)9

o'A .9- 0 C

in4

tu~~ .- 4- 1 .)t

0 uO0 = '0 rt

aCU W 4J3 4.)

oto

tn

CU) a) jC
%-wCL _

a4~-) = tO 4 C

4.)
104)

U U-
- . 4.)

CL 2!.C 0

00

o V,
caa

L

4-)-

CC

0. >

in 4.3 to. 4

&. "a r_ f

0) C

4J~ to. CL(a3)"
CL 0L 4.) C

L CL to 4

0.-Ci..1C CL S C
4.

(a 4J / 0. .44
00 0)f-0

C3C

a,~~1 4. 05

A-1

M. *0 a

= 4A r- 4- oS
L4

1
C-Ot eaCto4 j O .go

tA 4j - >%u =LAO0 -3'
0 ~ CA

I-. - n. Ln 0~ 0~c

.0 % - 4J 4n

cz u oiii
4-3 1.0

to 0cc

-S ~ 4

S- 0

4.) to(L o toSI

U)k U) LA '.0 LAO to0 4-0 -0 4). I4

.9D 0 cca54)0

to~ 0043)t

4.4)
0.J

M -
cu Z

C) 4-

I--

2 C

UV m
'-9 0.

CL eJi q) i a)@
D 1, S.. 41)

2.- 44 '
o0U C 0.

~ A-1l1

W ()
CD

zow,

0

CD) CD

ai-I

0- LA

c -0)

00

CA 4J

CL u

-iC s 4)

44 4.

030
ga! LL 0.u

-. 1120

LLI-

LJ

-J

C..)

A-11-

41

LL

4.)

~J4

-oL

u (U 0.4

t- -
CL- Ci

C3 V

u S.

S- > 4

4-

A-1

CLt

E 0

o 4-)tfC

4-) E

c0 0 c 0
C'J L)

s.. 4j

CD(Da
W~S-

4-M

4.)

4S-

E3 -- *.c

4-J u

I- LAf

@CD CD

S- C CD CD
o.) 1. 00 .

4J~ :3 C) +

4--4-

4-)

U :

a)
)

W)
CD U UT

0

CD S

0..

tDL

W4.a

5 0

O- E -C

0 4-) r-
u1

CE

0 0

CLC

m u a))

4.)

CL

o U- 4)
.- 04U)

0. 1- C

a)- 4-

a) 0.116

Appendix B

PAES: Processing Architecture

Evaluation Simulation

Approach and Capabilities

MVIRAC
B-i

I

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION 1

1.1 Approach
1.2 Software Overview 2
1.3 Verification 2

2.0 SOFTWARE STRUCTURE 4

2.1 Define Process Block 4
2.2 Define Architecture Block 8
2.3 Define Scenario 16
2.4 Run-Time Processes. 17
2.5 Evaluation/Documentation18

3.0 CAPABILITIES AND LIMITATIONS OF PAES 20

3.1 Process Design Features 20
3.2 Simulation Run-Time Features 25
3.3 Report Generation Features 26

4.0 SUMMARY 27

I i i -

LIST OF FIGURES

F i gure Page

I Structure of PAES 3

2 Functional Process Model 4

3 PRIMITIVE Structure 6

4 LINK Structure 7

5 Distributed Processing Architectural Features
Imposed Over a Process Flow Model 8

6 NODE Structure 10

7 BUS Structure 11

8 RESOURCE Structure 12

9 Scenario Input Mechanism 16

10 Functional Model 17

11 Example Evaluation Results for the PAES 19

$ YIRAC
S..II-_,--I

1.0 INTRODUCTION

This memorandum provides a user-oriented description of the

Processing Architecture Evaluation Simulation (PAES) that has been

developed by VERAC for use in:

(1) Evaluating performance of distributed and central processing

systems;

(2) Evaluating and trading-off the performance of communications

network protocols and architectures;

(3) Trade-off analysis of processor architectures in performing a ._.

specific job, task or function; This includes evaluation of

the trade-off between a large central processor and

distributed data processing architectures.

1.1 Approach

The PAES simulation simulates throughput, response time,

port-to-port delay and other performance factors for a single or

multicomputer processing system. The simulation is structured to allow

independent specification of the functional process to be realized, and*

of the computer architecture along with interconnect structure that is

to be evaluated. The function to be performed is defined by: (1) a set

of elementary functions designated as PRIMITIVES and, (2) a set of LINKS

that interconnect PRIMITIVES. PRIMITIVES model an elemental function by

means of a set of queues separated by transform elements. The queues

contain uwork units" and the transform elements cause the transfer of

work units between queues in accordance with the rules of an algorithm

derived to model the function. The architecture of a computer system is

modeled by its effect on transform speed or delay. The performance of

an architecture is analyzed by evaluating the number of work units in

the queues as a function of time, and by the flow of work units through

the functional process.

1 -

1.2 Software Overview

PAES has been designed from the top. The structure is such that

the simulation can run on a small minicomputer, but can be elaborated to
provide more detailed modeling when resident in a larger computer. This

is accomplished by having the models for operating systems, bus control
protocols, and external resources as subroutines at the bottom of the

code structure. PAES is initially resident on the PDP-11/34 and an

associated large disk. The software is segmented with an interactive

front-end portion for definition of the simulation data base and a

tightly coded run-time portion for the actual simulation run-segment

portion (Figure 1). The run-time segment with its data set resides
totally in one page (32K/16b) of the PDP-11/34.

The simulation is presently specified to model a process on the

order of 150 functional elements (PRIMITIVES). Processor architecture
modeling is presently sized at 30 computers with operating systems; 30

intercomputer busses; and 50 resources (disks, terminals, associative

memories, etc.). This sizing is oriented to the PDP-11134 size and

speed constraints.

1.3 Verification

PAES provides simulation definition by means of a set of databases

that are formed interactively in a series of steps. Each of the
databases in the sequence FPRO, ARCH, SCEN, and RTSU relates to the

structure imposed by the databases appearing earlier in the sequence.

PAES provides an evaluation of the internal consistency of each

database, as well as of the consistency of the database with the set of

databases to which it relates. A consistency report is given to the

operator when he exits the database definition session.

Svenc

2

! _

&- 0 w

-C.S

6-

L2 CL

a D

0 - -

'Cl

L9L
21J

2.0 SOFTWARE STRUCTURE

The software is segmented and structured as shown in Figure 1.

This structure consists of an interactive portion ("FRONT-ENID")

dedicated to interactive definition of the data bases and implemented in

PASCAL, a portion for the actual simulation ("RUN-TIME") dedicated to

rapid execution of the simulation and implemented in a structured

FORTRAN, and an interactive portion for output formatting and selection

("REPORT/EVALUATE") also implemented in structured FORTRAN. The PAES

blocks presented in the top-level flow diagram of the figure are

summarized in the following subsections.

2.1 Define Process Flow Block

oQ

PRIIWI.E

Figure 2. Functional Process Model

The functional process consists of a set of PRIMITIVES and LINKS as

depicted above. The task that is to be performed by the processing

(BVIRAC
4

hl

architecture which is to be simulated must be defined in terms of these

PRIMITIVES and LINKS by the PAES user. The Define Process Flow software

block provides the means for the user to build the data base FPRD that

contains the functional process definition.

Figure 3 presents an exanple PRIMITIVE. A PRIMITIVE consists of a i
sequence of queue sets separated by transforms of various types. Each

queue contains "work units". These model meaningful aggregates of data -R

associated with transfer of control (i.e. tokens) that are processed in i

performing the function. The PAES user must define the work unit at

each queue in terms that are meaningful in the context of the function

being performed. The PRIMITIVE is structured for:]
" multiple inputs

* algorithm complexity modeling

" modeling of references to external resources as well as

scheduling constraints

* distribution of outputs.

External Accesses are named, but not related to architecture (e.g.

memory devices, terminals, modems, etc.) during functional definition.

Algorithm size is modeled in terms of an arbitrary or canonical step J

size appropriate to the function. Instruction count is not directly

specified.

In a later block, architectural effects are modeled as imposing j

algorithm execution rates and external access delays on the PRIMITIVE.

These parameters regulate the work unit flow through the PRIMITIVE

A LINK is structured simply as an input and an output queue that

are connected by a path allowing work unit flow. This is depicted in

Figure 4.

5

I i~V
IIPKEXTERNAL I LINKC

C1
ACCESS

I.S
b

ALGORITHM

(PP.I [T[,E QUEUE

LOADING)
L VEUE

tI'I'(ACCESS

INPUT C41IPuT
QUEUES CUE LES

L j

Figure 3. PRIMITIVE Structure

pvGRAC

PRIMITIVE a PRIMITIVE b

Figure 4. LINK Structure

The LINK queues are specified as part of the PRIMITIVES In which they

reside. At the functional level, LINKS contain no structure. They

simply model the flow of control between the elementary functional

sections (PRIMITIVES).

At an architectural level LINKS can be used to represent activation

of subprocesses through an applications operating system; transfer of
control within a single program; or transfer of control between

processors by means of a bus.

A data size (in bits) is associated with a work unit in the input

queue to a LINK. Thus, transfer on data busses of data that is

coincident or intimately associated with transfer of control (i.e.
parameter set transfer) is modeled within the flow of control context.

Transfer of data that is not associated with immediate transfer of

control (i.e. data base access) is modeled within the PRIMITIVE as an

EXTERNAL ACCESS or, possibly, as an additional number of algorithm

steps. The modeling approach selected for this aspect depends on the

nature of the data and the designers interest.

This technique for modeling the functional process has two salient,

but strongly salutory effects on the system analysis and design effort;

(1) The user is forced to define the problem outside of the

context of his notion of the machines that will support the

7

process. This constraint forces the user to one further

level of abstraction at the initial step of the

analysis/design process (a higher TOP in TOP-DOWN). The

benefits of this can be early revelation of design flaws, and

also simplification of the design.

(2) By forcing a structured definition of the problem, a much

clearer context for discussion is presented to a set of

designers. This allows for clearly articulated design issues

and leads to well-defined interfaces.

2.2 Define Architecture Block

I

! ... / O E I

\ -i

0 PRIMITIVE

Figure 5. Distributed Processing Architectural

Features Imposed Over a Process Flow Model

aVIRAC
lae inke ...

' I
#

The processing architecture to be simulated consists of a set of NODES,

RESOURCES, and BUSSES. The user interactively specifies the

architecture by laying it over the functional process which was defined

in FPRO during the Process Definition Block. The structure is depicted

in Figure 5. A NODE is a computer in the sense that it contains

instructions and a local data memory, and that processing is

accomplished under a single operating system model. BUSSES are physical

communications channels that carry data between NODES. RESOURCES are

devices external to NODES and are accessed for data or for control

action in order that functions may be carried out. These accesses are

to such devices as shared memories, disks, and user terminals. Process

interaction between various work unit flow paths such as scheduling is

also modeled as a RESOURCE. The RESOURCE modeled in scheduling is time.

The architecture to be simulated must be defined in terms of these

NODES, BUSSES, and RESOURCES by the PAES user. Scenarios to be

simulated are represented as sequences of work unit inputs. The

scenario input points (External Accesses) are left unassigned during the

definition of the architecture.

The three architectural modeling structures are presented in

Figures 6, 7, and 8 and are discussed below.

A NODE (Figure 6) is a model of a single processor or computer.

The user defines NODES with a certain set of attributes during the

architectural definition phase. Basic features defined are:

(1) instruction execution rate, and

(2) an instructionlalgorithm-step-size factor for a set of

instruction mixes.

The second item allows characterization of the effect of the instruction

mix on algorithm processing (e.g. arithmetic fixed, arithmetic floating,

string processing, logical, memory access intensive, etc.). Careful

modeling of this parameter set can be used to trade-off the effects of

0

--

. . . . " , ! . . . , ,

C 'xera t ing Systemn Devic
Ma e IR 1 z

Exenl

II PRIIion TI

Figure 6. NODE Structure

V!RA~10

I~afer See

Pri-Itive LikCI tv

a 1 Link C.

Figure 7. BUS Structure

External Resource

Accessing Delay Model

I Transfer Spee
I 1

I *,
PRIMITIVE E ~ PRIOITTVE

0* _

Figure 8. RESOURCE Structure

/ ,RAC

microprogrammed special-purpose instructions or of hardware features

such as hardware floating point or auxillary fast memory.

The tasking of functional responsibilities to computers is

accomplished by the operator by assigning PRIMITIVES to NODES. This

structure can allow determination of total instruction and data memory

required.

An operating system is specified for the NODE. This is mechanized

as follows: A set of operating systems are implemented as subroutines

at the bottom of the code. New or special purpose systems are simply

modeled in a new subroutine. The operating system models determine a

proportioning of the computing time to each PRIMITIVE, taking into
account the requirement of the operating system itself with its
associated handlers. The proportioning is recalculated on each

simulation time cycle, AT. The operating systems use as input the

loading (number of work units) in the Combining Queues (see Figure 3)

For the sets of PRIMITIVES that have been assigned to the NODES. The

simplest operating system model is a fixed proportioning of the

computing time among PRIMITIVES. The most complex model treats a work

unit arrival at a PRIMITIVE combining queue as a call to the operating

system for a task. This model can include priority queuing, aging

algorithms, polling, and variable overhead factors. This model can

cause a single PRIMITIVE or set of PRIMITIVES to have time for a number

of aT cycles representing active tasks in core. Work unit flow in the

remaining PRIMITIVES of the NODE can be stopped, thereby modeling

inactive processes. Delays for external device data handling in the

NODE are also provided by the user to allow this factor to be included

in the determination of the performance of a given processing

configuration. -

The second type of structure included in an architecture model is

the BUS (Figure 7). The BUS models physical data channels between

processors (NODES). The BUS structure may also be utilized if the

designer so selects to model flow of control associated with passing

data through a slow memory in a very large computer.

13

I,

The basic parameter associated with a BUS is the data transfer rate

in bits/sec. The BUS model regulates the transfer of work units on

LINKS between certain PRIMITIVES. A work unit can be thought of as a

packet or block transfer in this context. The size of the work unit

(i.e. data block) determines the work unit transfer rate because of

loading. Thus, in the LINK input queues, a size, in bits of

information, is assigned to work units.

The BUS model is assigned a set of LINKS representing functional

data transfer paths that share one physical bus or channel.

Lastly the BUS model is assigned a protocol model selected from a

set of protocol models available as subroutines in the simulation.

These models, as with the operating system models, reside at the bottom

of the PAES code structure. New protocols are easily created or

existing protocols modified. The input to a protocol model is the work

unit loading of the set of LINK input queues for the BUS. The output of

a protocol model is the transfer rates for each LINK in a &T period. A

simple model might allocate a fixed rate to each LINK (TDA)

independently of the loading. A more complex model might model the

delays associated with contention access (ALOHA-type) that are a

function of loading. A most complex model would treat the work unit

loading as DAMA requests and compute transfer rates based on priority,

age-of-request, and BUS control overhead.

The similarity in the underlying structure of the BUS and NODE

models is due to the fact that both structures represent hardware

resources. with an associated resource allocation structure. This same

structure is apparent in the modeling of an external resource. The

approach of allowing the allocation mechanism to be modeled in as great

a detail as the user wishes, but within a very formal structure

represents one of the strengths of the PAES approach.

The third type of architectural structure is the RESOURCE (Figure

8). This structure is used to model any delay in flow of control that

is caused by a process reference to an external device. Examples of

BVIRAC
14

RESOURCES to be modeled are external memory devices, interactive

terminals, and sensors. A more subtle example is scheduling where the

RESOURCE model may reference a real-time clock that can be thought of as

a "resource". A process factor also to be modeled that is similar to

scheduling is algorithmic delay that depends on the state of distinct

functional processes. This too can be most conveniently modeled within

the RESOURCE structure.

The objective of the RESOURCE model is to compute delays for a set

of PRIMITIVES that interact with the RESOURCE. For example, a number of

PRIMITIVES situated in distinct computers may require data files from a

single disk. The basic parameters to be modeled by the RESOURCE are the

data transfer speed and the delay associated with the access (e.g. mean

head search time for a disk). These factors are included in the model.

The RESOURCE model is assigned a set of PRIMITIVES and specific

EXTERNAL ACCESSES by the user. This assignment reflects the functional

role of the RESOURCE. The functional need reflected in the PRIMITIVE

EXTERNAL ACCESS such as need for a data base reference is mapped to an

architectural structure such as the reference to an external, large core

memory or disk.

An accessing model is also included in the resource. This model

utilizes the loading of the referencing PRIMITIVES as input and produces

access delays for each of the referencing PRIMITIVES. An example of a

complex accessing model might be that for a crossbar-switched,

multiple-processor/multiple-memory structure such as the 5-1

architecture. Access delays associated with the crossbar bus

availability could be modeled in great detail in the simulation.

i1

2.3 Define Scenario

'EXTERNAL

ACCESS

Figure 9. Scenario Input Mechanism

Scenarios are modeled by injecting work units into a set of

PRIMITIVES in accordance with a specified time distribution. The

scenario is implemented by assigning EXTERNAL ACCESSES to a scenario

input structure rather than to a RESOURCE. The user performs this

assignment interactively in the Scenario definition block.

Each input stream may be specified by the user as a time function,

or it may be specified by the user to reference an external disk or tape'

file. The first capability allows convenient and expedient modeling

appropriate for most analytic requirements. The second capability

allows utilization of data recorded during experimentation with the

target system environment or with a partially completed system. It also

allows creation (on tape or disk) and utilization by the user of

scenario loading patterns that are not conveniently represented

analytically.

VURAC

2.4 Run-Time Processes

h4oof 2
BU

RESOURCES Bu BU3

OE 3

O PRIMITIvE

LINK

Ev3luation
and aepO-ting

Figure 10. At run-time work unit flow is generated in the functional

model. Flow rates are determined by architectural models. Inputs are

generated by the Scenario model. Outputs are to evaluation and

reporting files.

Run-time processing consists of the following stages (see Figure 1).

(1) Set Run Control - The simulation time increment is set. The total

run-time is set. Warning conditions are specified. Output reports

and port-to-port tracers are specified. This is performed as the

last step in FRONT-END interaction.

(2) Scenario Driver and Combine Flow - These blocks are located at the

top of the actual scenario time-increment loop. They provide

bookkeeping functions for the update of the state of the loop in

each AT increment. These functions include moving tracers within

the model and updating the time history of queues being studied.

17

/ ,]I

(3) Architectural Effects - This block provides the computations

required for operating systems, bus protocols, and resource

allocations. Rates of work unit flow are computed and stored.

(4) PRIMITIVE Flow Through and O-Delay Flow Through - These blocks

provide the transfer of work units within the model based on the

rates provided by the Architectural Effects block.

2.5 Evaluation/Documentation

During the run-time of the simulation, files are developed of the

loading of specified queues, port-to-port transit times and CPU

utilization. The Evaluation/Documentation block allows the user to

review these performance curves on a display and to obtain labeled

hardcopy graphics of the output, if this is desired. Figure 11 presents

example results from a PAES run.

(VIRAC
18

0

I

a

(a) Scenario Input I D*W1h U 2

€

U

0._

II

3.223." -WEt'

' " In

7. w (b) CPU Utilization

* 3 RXIF-'3,

(c) Port-to-Port Response j

Figure 11. Example Evaluation Results for the PAES

Processor Architecture Evaluation Simulator

19

3.0 CAPABILITIES AND LIMITATIONS OF PAES

The PAES simulation is time-driven. Thus, it offers a natural

vehicle for measuring rates of flow, loading, and utilization for

processing networks. The loading of any internal queue, operating

system, bus, or resource can be easily observed because of the flexibly

structured method of report generation that is embedded in PAES. Time

for performance of any function or for sequences of functions related by

control flow is provided in PAES by a tracer structure. Figure 11

presents examples of the output of PAES measurements.

The elemental unit of flow in PAES is the work unit. The work

units are transferred from queue to queue in the process model at a rate

determined by algorithm, access, and architecture modeling. The work

unit represents, principally, the flow of control from one process stage

to the next. In this sense it is a "token". However, it is the nature

of process flow that normally data flows with the transfer of control.

It is normal for the "event" of a data transfer to control the

"activation" of a subprocess. Work units are given a size in bits to

allow modeling of the transfer of data with control. This size can

model, as examples, the size of a parameter set associated with an

action call by a task to an operating system; the size of a parameter

set passed to a sub-block of a program; or the size of a data block

transmitted on a bus. Thus, it is natural to model the time-of-arrival

of the last fractional increment of a work unit as the time of the

action-call to the related operating system or the time of the

requirement for databus capacity. This discrete aspect of flow is

provided automatically by PAES by allowing only integer work unit

transfers across links. Modeling of operating system and external

access device interactions with work units is done by the designer.

3.1 Process Desiqn Features

PAES FRONT END flow and database structure is designed to support,

in a natural way, the analysis and design of a processing system. A

fully interactive interface is supported to facilitate ease of designer

interaction with the simulation.

20

The first stage in the analysis process is definition of the

process to be performed. The analyst perforns this task in a structured

way by developing the PRIMITIVE and LINK structure that defines the

problem. When this development occurs within a planned series of

reviews and tests with documentation, we consider it a part of a total

design methodology. This methodology is denoted PAEM (Processing

Architecture Evaluation Methodology). The process or function is

defined in database FPRO (Functional Process).

In order for the designer to develop FPRO, he must decide on

algorithm sizes, flow of control, database structure, and system

inputloutputs. The nature of the FPRO model is that the definition of _

the job to be performed is clearly presented. Also sizing assumptions

by the designer are evident. In a formal design environment this

structure is documented and reviewed. It is a natural format for

ironing out differences in view of the problem to be solved or of sizing

assumptions. Specialists'in algorithms to be supported can contribute

sizing estimates without architectural limitations; separate

organizations that are working on different aspects of the problem have

a common basis of reference; and users who have specified the work have

an opportunity to review a clearly articulated statement of the problem

to consider if system requirements have indeed been correctly

addressed. These features all promise to lead to solid and consistent

problem definition. J

Testing of the process definition in FPRO is an extremely valuable

stage in design development. Normally, a specification will contain

performance requirements consisting of algorithm accuracies, throughput

requirements, loading limits, and port-to-port responses. Also, certain

architectural features such as a disk memory or a batabus will be j
specified. Possibly, the processor will be specified and the design

problem is limited to structuring the software and operating system.

Architectural features can be implemented and specification limits on

timing can be implemented as gross delays introduced by pseudonodes.

The process can then be simulated at a very high MIP rate. The results

21

indicate loading throughput, and response times inherent in the

specification. Performance inconsistencies that occur at this stage are

due to specification inconsistencies only, since no design limitations

are imposed. In a PAEM, environment a formal review of the process

definition and the specification is appropriate at this point.

The second stage of database definition in PAES is the

specification of the processing system architecture, ARCH. This

includes the set of processors, operating systems, external memories,

terminals, modems, and interconnect busses. The ARCH database

definition is verified automatically for consistency with the specified

FPRO. Multiple architectures can be structured for each FPRO to allow

easy trade-off performance analysis.

A computer is modeled as a NODE. A NODE is assigned a set of

elemental functions. A NODE is characterized by an instruction cycle

rate (e.g., 1 MIP). The designer can select a number of instruction

mixes and assign a multiplier to reflect instruction-cycleslinstruction

for a given mix. The mix type of a given algorithm is specified in the

PRIMITIVE. Thus, the designer has great flexibility in modeling the

impact of the types of instructions used in an algorithm on the

processing speed. This feature can be of immense value when evaluating

instruction set options for a microcoded machine and when evaluating the

impact of floating point hardware.

The computer model contains an operating system designator and a

parameter set. This data is provided by the user interactively to

designate the operating system. A set of operating system models is

carried in the PAES code as subroutines. The user has the option to

provide a new operating system subroutine or to modify an old one. This

feature allows the user to select the level of operating system model

appropriate for his needs. A very detailed model can be used to study

trade-offs in operating system types or in evaluating parameter settings

in an operating system. The computer model also carries the list of

external accesses occuring from the node. A delay is associated by the

user with each access. This delay is to model handler swapping and

(BVIRAC
1 ll "" W oal i, , , m a i m l mm~ H i |. ... | | 2

processing times. It may be incorporated in the operating system

overhead computation.

An interconect between processors is modeled as a BUS. The user

defines the bus and assigns functional LINKS to it. The BUS normally

models a physical entity that interconnects elements of the system.

Examples are a simple RS232 asynchronous line, or a complex Ethernet

databus. BUS models can also be used to model transfer of control in

large processors where activation of a task involves a significantly

slow process of access to a large memory to read activation parameters.

BUS models include a specification of the data rate supported in

bits-per-second. The models also include a protocol model implemented

as is the operating system for the NODE. The designer interactively

designates a parameter set and a protocol type for a bus. Protocol

types are carried as subroutines in the PAES code. The designer can

provide subroutines for protocols in as much detail as needed. For

analysis and trade-off of network architectures, the designer can

implement a complete protocol. Note that busses transmit work units and

work units model packets of communications data. Thus, the relation

between the bus architecture and the real world can be accurately

established by a correctly modeled work unit input and a carefully

structured protocol.

External resources are the third type of structure defined by the

designer. These resources model devices external to the processing

chain and complex processes that interact with multiple primitives.

Examples of the former are bulk memory devices, modems, and terminals

(with operators). Examples of the latter are subprocesses whre:

processing is a function of the loading on other subprocesses, and

secondly, schedulers of work unit flow from multiple primitives.

External resource models include access line rates and a model of

access protocol. This protocol model is of the form of the resource

control models for the previous two structures - the operating system

and the network protocol. The designer can specify a resource type and

23

/ I

a parameter set for each resource modeled. The designer can provide a

subroutine to PAES that models an external device to any level of detail

of interest. Detailed models would be appropriate, for example, for

study of contention resolution approaches for a bulk memory, or, as a

second example, for analyzing various scheduling algorithms.

Scenarios are defined by the designer in database SCEN during the

third stage of design definition. The designer has complete flexibility

in designating the scenario inputs. Scenarios are modeled as work unit

loadings on external accesses. The access points are specified by the

designer during this stage. Analytic descriptions of loading can be

provided by tne designer by interactively specifying a curve type and

parameter set for curves carried as subroutines in PAES. Subroutines of

arbitrary histograms can also be provided by the designer. The designer

can also specify an access to a disk or tape and the access format and

record designation. This allows scenario data to be used that is

derived from real-world test and experimentation. It also allows use of

data generated by other simulatiois or in a master facility. Thus,

uniformity of testing can be guaranteed.

Multiple scenarios can be structured and stored for use with single

or multiple architectures. Thus, trade-offs on scenario sensitivity can

be easily performed.

Consistency checks of a scenario definition with an architecture

are provided automatically by PAES.

The designer specifies the simulation run to be performed in the

fourth stage of PAES. This interactive stage allows him to easily

modify simulation run characteristics in order to evaluate the

simulation performance itself, or to vary the features being examined.

PAES is structured to provide complete transparency of the

simulation to the designer. He can specify any of the following three

types of reports:

- Y24

(1) Queue loading as a function of time; (Inflow to PRIMITIVES

can also be reported).

(2) CPU, bus or resource loading in MIPS, bits, or accesses can

be generated. (Bus and resource loading has not been

implemented yet.)

(3) Tracers to measure transit time between any two queues along

a specified thread of control flow.

Start times for thread tracers can be specified by initial thread time

and interval between times. This allows a complete history to be

generated of port-to-port response under scenario loading.

3.2 Simulation Run-Time Features

Timing parameters that characterize the simulation are as follows:

The simulation updates the state of the process flow each AT seconds.

Parameter AT is typically 1-10 msecs. A period of 1 msec. to 32

seconds can, at present, be simulated for the total run. Intervals are

now set to 40 x AT. Intervals are the time-incremen. at which report

blocks are shifted to disk files and scenario histograms are taken in.

Certain PRIMITIVES and LINKS are denoted y the operator as

O-delay. These do not effect work unit flow. Thus, structures such as

external accesses and algorithms can be included in the process model,

but need not be considered in the simulation run if they are not

appropriate for a particular design approach. This is particularly

appropriate to memory structure modeling where external memory devices

may or may not be used. lhus, the delay associated with external memory

access may be zero. A PRIMITIVE or LINK is also set to O-delay

(default) if the delay imposed is typically very small. Warning flags

are set if this condition occurs during a simulation run.

25

The simulation moves work units through one PRIMITIVE and oneLINK,

at most, each AT interval. Thus, nonzero delay primitives introduce a

minimum delay of AT to each work unit flow.

During each AT increment all operating system, bus protocol, and

resource access algorithms are updated, giving a fully dynamic model of

these processes.

Also, during each AT increment reports for loading and response are

updated giving a complete view of the evaluation of the process. A

special feature allows measure of work-unit-inflow/AT-increment as well

as loading/AT-increment for the PRIMITIVES.

Port-to-port response time measurement is accomplished by tracking

a tracer work unit through a thread that has been specified by the

operator. Tracers are updated each AT increment. The work unit traced

is either one that is available in the starting queue (from scenario

evolution) at start time or is a pinch of work unit (.01 wu) added by

the tracing procedure. Traces canbe specified to occur every few

increments to create a history of port-to-port response time as

illustrated in Figure 11c.

3.3 Report Generation Features

VERAC has emphasized providing ease of designer-access to PAES

capabilities. This is reflected in the availability of output data for

the designer. Raw data is stored by the simulation on report blocks on

disk. The report program accesses and manipulates this data to present

graphs of desired performance features. This data is presented to the

user on a graphics display terminal. The user can vary the presentation

and then call for a plot on a flat-bed plotter. Figure 11 presents

example reports.

All warnings generated during the simulation run are presented to

the user on-call during the report/evaluation phase.

CVURAC
26

' ! !

4.0 SUMMARY

PAES provides a user with a processor architecture evaluation tool

that is designed for great flexibility and user convenience.

PAES provides a vehicle for consistent process definition. Process

definition is easily structured into a methodology (PAEM) that provides

visibility and review to the process definition (i.e. statement of

problem). The PAES format of LINK/PRIMITIVE representation with

algorithms and accesses clearly denoted, provides a basic reference or

context within which related design and evaluation teams can develop a

concensus statement of what needs to be accomplished by the system.

PAES provides a method of specification review or generation.

Specification limits can be implemented in a pseudo-architecture on the

process. Specific architectural elements (processors, memories, etc.)

can be included in this model. Simulation runs indicate performance

features implicit only in the specification.

Multiple architectural approaches can be easily specified and

tested against the basic process. Trade-off and sensitivity analysis

are, thus, easily acco.,modated.

Multiple scenarios can be tested against a given architecture to

evaluate sensitivity of the structure to this variation. Scenario input

sources can be analytic or histogram models or externally provided data

files.

The user can model key features of interest to great detail - at

his option. Features amenable to this are: Operating system models,

network protocol control models, resource access models, schedulers, and

scenario inputs.

27-

All internal queues can be examined by the user. All thread

transit times can be examined by the user. All resource loading

(operating systems, bus controller*, and resource access controllers*)

can be monitored.

The input and output of PAES is directed toward user convenience.

Databases are constructed using interactive editors especially

structured for each database. Output formats can be generated, viewed

on a display, and plotted if desired. Thus, the user can moie rapidly

through analysis and design of a complex system.

tI

*to be implemented

28

A

I7

Appendix C

Detailed Architecture Evaluations

(SVIAC

This Appendix provides detailed results of evaluations of data

processing subsystem architectures. The architectures evaluated are:

(1) Centralized,

(2) Thread, and

(3) Hybrid.

These architectures are described in detail in Section 4.0 of this

report.

Each architecture was evaluated for two scenarios:

(1) single-spike, and

(2) double-spike.

These scenarios are described in Section 3.0.

The process that is executing on these architectures is described

in overview form in Section 3.0 and in complete detail in Appendix A.

The simulation tool PAES was used to provide the evaluation. This

tool a.id the methodology PAEM of which use of PAES is a part is

described in overview form in Section 2.0 and in further detail in

Appendix B.

The evaluation results presented here consist of cpu utilizations

for computing "nodes". In the Centralized Architecture, there is a

single node, CENTRAL.

In the Thread Architecture, there are nine computational nodes, as

follows:

RRA Radar return assimilation

MACRO Radar macro scheduling

MICRO Radar micro scheduling

SV SIV returns processing

C-2

TI Angle group (Track Initiation) returns

processing

OTOD Object track and discrimination

REDUND Object correlation

IP Intercept planning

IC Interceptor guidance and control

In the Hybrid Architecture, there are four computational nodes, as

follows:

RRA Radar return assimilation

MACRO Radar macro scheduling

MICRO Radar micro scheduling

AGGPRO Aggregate processor, representing the
set of THREAD processors performing
all other functions

The results presented in the following are organized as follows:

Centralized Architecture

CENTRAL node, single-spike scenario: Figure C-i

CENTRAL node, double-spike secnario: Figure C-2

Thread Architecture

Each of nine nodes, single-spike scenario: Figures C-3 to C-11

Each of nine nodes, double-spike scenario: Figures C-12 to C-20

Hybrid Architecture

AGGPRO node, single-spike scenario: Figure C-21

AGGPRO node, double-spike scenario: Figure C-22

Note that the remaining three Hybrid Architecture nodes - RRA, MACRO and

MICRO - coincide with three of the Thread Architecture nodes.

$VIRAl
IRC emA

Each figure consists of a pair of plots. The first presents

"Sample Values", each of which is the loading measured over the 2 ms

integration step interval used in PAES. The second presents "Average

Value Over An Interval". These values are averages over a 60 ms

interval. The averages represent cpu utilization where a modest

queueing of work units is involved, and therefore are more indicative of

cpu requirements.

C-4

Li

LiJ
LI)

LiJ

Cl,

LiJ
CD 0

-2-..

C))

a;0
(SdIW) NOI.LVZI1lI1n fldO 3

u c

.41 U

L

41 L

O L)

LA-

LI)

C-5-

L)A

in LaJ

-J 4J

C

ui~- ----

vi

In 0 D

(SdIW) NOIVZIIA nd) 1

C-6

-Jl

LAJ

00 LJ
LUJ

:P.-
C) d~

< 1 0;

Ckc -0

C) C

~ 0.
(SdIW NOIIZIII.n nd

.0 0)

L C~C

-S.

amnJ It

00

C- 7

2!:1
7'A CA.

a 1. -4
L/) 4?J

-AJ ;-

CD aD

LU z

0L
0u

In 0 U)M

CD a

LOO

C-8

-LJ

Cl

00

Lii

C;o

4J C

-S-0

)

-WIN= S

i
U W

(SdIW)~0 N'~nn:

M 5.. O

-J~

LAJ

LLI

-'-

-Jw

CD,

wV

41-
v. to

(SdIW) NoIiVbZrI.Lin fldO U
.4-

-o a
'w U,

-10

C-10

l01

LJ

I-)

LL)

o n W
LU

u-o

LU

o$- 0.
1-

to LA

Un

LL)

-S.

in L

-i

in C

(SdIW) NoiivziIli NOd

-4J

i~ui

LUU

il

C-12

LUI

LUJ

-LJ

LU c

CDa

- LJ

fl3
C)~

S- CJ

Q w.

U 0)

UU
Ln L

tn- CD
m C

-Jn

(SdIW) NOIJ.VZi1iil fldO

avinvic

-JJ

w

"a 0.

UU

cnuin

M-"r.M ImN llMo

C--

-LJ

LiiJ

LLii

C)

0 m

Li

(SdiW N0iZIi d

(DVI(-3

cc .M

bJ

LL) Lii

V)/

.cc
L'-4

Lii
0

(SdlW) NOMl an nd3 _ d
4J 4n

L/)I0
ful;

LU.

Ij-0

CCC

CCl
cn

(SdW)NOI- 4 -.IInd

C-16i

LU

L&U

LUJ
-i-

LLLU

-LJ C.

LU Q

---- ------------ C 4c
U- C Ln C

-a C

(SdI) Noivzii.L n0

0u

4AV

u .1c

CC,,

co~

Gez
2=)

060

C--

-JL

40%

LLI

I-i

-i LA.

C-18

14 L

Laii

LiL
MCC

C)

LiJ

cri

CDC

W a,

.S-

0.

V)V

.C)a

I--

C-19.

< LiJ

LUJ uin

J

00

(SdIW) NOIIVZIlin fldO

L".. UJI
UnU

U.

uj L"

tn

Lc!a

C-2

LJ

C

LUJ

LLL

C>
C)C

'0 C%j CDI)

3-

4J U

o 4)
L. -w~

00)
L

CL

I.-

mm=

cv0
en C*4 0.

(SdIW NOIV~liin nd

M - LA

-6

LAJ
I-

LL)i

cr-i

oto

- '0CV)ci u~

4V)

.cci
L .w

tc c

C-2

coJ

LO

ClC-

CC

(SdIW) NOLVZIllfl fldO

Va 'I,

C-23~

-LJ
(LJ

LJ

;;o.

<

U.S-

(U I

C~C

CLC

inU

(SdIW NOIV~llin nd

C-24)

cz

uLJ

Lii
-AJ

Lii

LLJ
0

0 0D

(sdIW) NOILbZililfl fldO
4JC

41~ V)

.r w

0 U.J
uj, .9na

.0
6

CC,

L
C,, L)

(SdiW NOIViii

C-2-

LLLU

oC
Lic Lii

LLI-

Lii

Ia.

1-C3
I -

M~a
C4i.. I

LiiIW NOIaii d

C-))

--

4m -i

M 0qo 0 i

C-26

Appendix D

Cost Summary

CDVRAC

D-1

VERAC No. 80-22

BMDSC

Contract No. DASG 60-80-C-0017

Recap as Invoiced

Hours Cost Total Billed

Direct Labor:

MTS 11I 1527

MTS I 551

Subtotal: $37,209.00

ODC's:

Materials 7323

Travel 2454

Subtotal: $ 9,777.00

Overhead: $44,651.00

Total Direct Costs and Overhead: $91,637.00

Fee: 8 8,247.00

Total Invoiced: $99,884.00

Recap as Contracted

Hours Rate Total Cost

Direct Labor:

MTS III 1527 $55.48 $84,719.00

MTS I 551 $27.52 $15,165.00

Total: $99,884.00

1,

